Chapter 20

Magnetism

Permanent Magnets

Each magnet has two poles Unlike poles attract Like poles repel

Poles behave like electric charges

No Monopoles

From theoretical point of view, MM are very natural (Maxwell eqs, quantization of charge, GUT...) but the fact is, none have been found 😕

You can try to be creative...

Magnetic Field and Magnetic Forces

Earth as a Permanent Magnet

•Earth is a huge magnet – not quite clear why ☺

 North geomagnetic pole ≈ south magnetic pole (so that compass' N points to Earth's N)

•There is an offset between magnetic axis and rotation axis

Magnetic Field Lines

 Direction of lines: tangent to **B** •Density of lines: proportional to |B| •The N pole of the compass needle points in the direction of **B** Unlike electric field lines, magnetic field lines do not point in the direction of the force on an electric charge

Force on a Current in Magnetic Field

A magnet exerts a force on a current-carrying wire

$F = IlB\sin\theta$

- Force F is perpendicular to both the current and the field
- The direction of F is the direction in which a right-handed screw would advance in moving from I to B

Force on a Charge in Magnetic Field

Force exerted on a charge moving in magnetic field:

$$F = qvB\sin\theta$$

- Force *F* is perpendicular to both the velocity and the field
- The direction of F for a positive charge is the direction in which a right-handed screw would advance in moving from v to B

Force on Current vs Charge

• Current due to a single charge: Π

$$I = \frac{q}{t}$$

• Current due to many charges:

$$I = N \frac{q}{t}$$

• Force on these charges:

Magnetic field units: Tesla $1 T = 1 N/A \cdot m$

$$F = NqvB = Nq\frac{l}{t}B = IlB$$
Magnetic Field and Magnetic Forces

Motion in Magnetic Field

Force perpendicular to direction \rightarrow |v| does not change

Magnetic Field and Magnetic Forces

Motion in Magnetic Field

Force perpendicular to direction \rightarrow |v| does not change

Motion in Magnetic Field

Helical Motion

 occurs in 3D when direction of initial velocity is not perpendicular to the field

Field can't change $v_{||}$, so it remains constant

Magnetic Field of a Wire R $\frac{\mu_0 I}{2\pi r}$ r $\mu_0 = 4\pi \times 10^{-7} \,\mathrm{T} \cdot \mathrm{m/A}$ permeability of free space

Force between Parallel Wires

