Chapter 23 Geometric Optics

Light

• What is light? Waves or particles?

both

- Geometric optics: light travels in straight-line paths called rays
 - This is true if typical distances are much larger than the wavelength

What it is about

- Phenomena addressed by geometric optics:
 - Propagation: light goes in straight lines
 - Reflection: angle of incidence = angle of reflection
 - Refraction: Snell's law
- Phenomena not addressed by geometric optics:
 - Polarization
 - Diffraction

- Electromagnetic theory
- Interference
- Photoelectric effect

Quantum mechanics

Reflection and Refraction

 $egin{aligned} & heta_a & ext{incident angle} \ & heta_r & ext{reflection angle} \ & heta_b & ext{refraction angle} \end{aligned}$

The incident, reflected, and refracted rays, and the normal to the surface, all lie in the same plane

Specular and Diffusive Reflection

smooth interface, definite reflection angle diffusive reflection: rough interface, scattered reflection

Object point: where the rays actually come from **Image point**: where the rays appear to come from

s: object distance s': image distance

here outgoing rays do not actually come from P' → image is **virtual** if they did, the image would be **real**

6

Sign Rules for Distances

Object distance: when the object is on the same side as the incoming light, *s*>*o*, otherwise, *s*<*o*

Image distance:

when the image is on the same side as the outgoing light, s'>0, otherwise, s'<0

mirror

Sign Rules for Distances

image point

Geometric Optics

object point

Object distance: when the object is on the same side as the incoming light, *s>o*, otherwise, *s<o*

Image distance:

when the image is on the same side as the outgoing light, *s*'>*o*, otherwise, *s*'<*o*

refracting interface

need at least two points (P,Q) to figure it out

Geometric Optics

Inverted and Reversed Images

Image can be erect (right side up) or inverted (upside down)

 Image can be reversed ("mirror-image" – left hand looks like right and vice versa)

a plain mirror image is **virtual**, **erect**, and **reversed**

Spherical Mirror Reflection

Spherical Mirror: s>f

Spherical Mirror Magnification

Convex Spherical Mirror

- convex = curving out
- All is exactly the same except that f (and R) is negative

Focal Point of Convex Mirror

provided *s*>*o*, a convex mirror always forms a virtual, erect, reversed image (same as the plain mirror)

m=1 for plain mirror*m<1* for convex mirror

focus is virtual

Principal rays

Need them to find image position and magnification

- *QBQ*': ray parallel to the axis reflects through focal point
- *QAQ*': ray through focal point reflects parallel to the axis
- *QCQ*': ray through the center reflects back
- *QVQ*': ray to the vertex forms equal angles with the axis

this construction neglects aberrations

Snell's law

This is the basic law of refraction

angle of incidence not equal to angle of refraction!

 $n_a \sin \theta_a = n_b \sin \theta_b$

n: index of refraction what is this?

Index of Refraction

• = ratio of the speed of light in the material to that in vacuum $n = \frac{C}{v}$

n>1: light travels slower in the material than in vacuum

What changes when the light passes from one medium to another? * Frequency ? No, it would imply creating/destroying waves * Speed? Yes, because the media have different *n* * Wavelength? Yes, because $\lambda = v/f$

Total Internal Reflection

• Snell's law may give $\sin\theta > 1 - \text{what does it mean}$?

- There are always two rays: reflected and refracted
- At some angle, the refracted ray disappears

$$n_a = n_b \sin \theta_C$$
 critical angle

can only happen if $n_a < n_b$

Fiber Optics

- Light can be transmitted along a fiber with almost no loss due to total internal reflection
 - Due to impurity of glass, the signal eventually degrades (typical rates are ~50%/km)

Widely used in communications – much higher frequency than for regular wires, therefore can transmit much more data

Geometric Optics

Refraction at a Sphere • Use Snell's law $n_a \sin \theta_a = n_b \sin \theta_b$ $\frac{n_a}{s} + \frac{n_b}{s'} = \frac{n_b - n_a}{R}$ $\theta_{\alpha} = \alpha + \varphi$ $\varphi - \beta = \theta_{\mu}$ $n_a(\alpha + \varphi) = n_b(\varphi - \beta)$ $n_a s'$ magnification: M = $n_h S$

Thin Lens Equation

$$\frac{n_a}{s_1} + \frac{n_b}{s_1'} = \frac{n_b - n_a}{R_1}, \quad \frac{n_b}{s_2} + \frac{n_a}{s_2'} = \frac{n_a - n_b}{R_2}$$

assumptions: $n_a = 1, \quad n_b = n, \quad s_2 = -s_1'$

$$\frac{1}{s_1} + \frac{1}{s_2'} = (n-1)\left(\frac{1}{R_1} - \frac{1}{R_2}\right) = \frac{1}{f}$$

Geometric Optics

Graphical Methods for Lenses

Be careful with the focal length sign!

- (1) Parallel incident ray refracts to pass through second focal point F_2
- (2) Ray through center of lens (does not deviate appreciably)
- (3) Ray through the first focal point F_1 that emerges parallel to the axis

(a) Converging lens

- (1) Parallel incident ray appears after refraction to have come from the second focal point F_2
- (2) Ray through center of lens (does not deviate appreciably)
- (3) Ray aimed at the first focal point F_1 that emerges parallel to the axis

(b) Diverging lens

Graphical Methods for Lenses

(a) Object O is outside focal point; image I is real.

(b) Object O is closer to focal point; image I is real and farther away.

