Chapter 28 Quantum Mechanics of Atoms

"Your theory is crazy, but it's not crazy enough to be true"

N. Bohr to W. Pauli

Limitations of the Bohr Model

- The model was a great break-through, but there were issues:
 - the nature of angular momentum quantization was not clear, and L being multiples of $h/2\pi$ looked like a coincidence
 - the model did not describe atoms with ≥2 electrons
- The theory was not crazy enough to be true
 - more radical departures from classical concepts were needed

Particles as Waves

- Light, which everybody thought was waves, also behaves like particles
- How about particles? Maybe they can also behave like waves?
 - Searching for symmetries in nature is extremely fruitful!

De Broglie: electron can behave like a wave, and its wavelength is $\lambda = h/p$

same as photon

Electron Diffraction

- Davisson & Germer (1927): a beam of electrons is diffracted on a crystal, much like the X-rays
 - they were able to measure the electron wavelength from the diffraction pattern, and knowing the electron speed, confirm that

$$\lambda = \frac{h}{mv}$$

* It was later confirmed for other particles (e.g. α-particles)
* Macroscopic objects do not exhibit wave properties –the *h* value is small

Uncertainty Principle

- If you want to measure the object position, you will need to touch it. Any touch will change its momentum!
- Even if you just look at an object, if you see it, it means that photons stroke the object and got reflected into your eye. The strike changed the object's momentum!

Uncertainty Principle

- To see an object, we need wavelengths less than its size
 - can't see atoms with eyes! Why?
 - distance ~10⁻¹⁰ m, λ=(3-7)×10⁻⁷ m
- We can only determine distances with accuracy $\Delta x \sim \lambda$
- Suppose we are looking at objects using single photons
 - when the photon strikes an object, it changes its momentum by a value of order of its own momentum:

$$\Delta p \sim p_{\gamma} = \frac{h}{\lambda}$$

$$\Delta p \, \Delta x \thicksim h$$

 $\psi = \sin(kx - \omega t)$

$$k = \frac{2\pi}{\lambda} = \frac{p}{\hbar}$$

- If we know wave number *k* (and momentum *p*) precisely, we have no clue where the particle is
- If we don't know the wave number well, the particle looks like a mixture of waves with different *k*
 - this is what is called a wave packet
- The wider is the *k* spread, the narrower is the wave packet

Particles as Waves and Uncertainty

Principle

Uncertainty Principle

 If a particle is also a wave, then it doesn't have a definite trajectory. If we know well its direction, then we don't know well its position and vice versa.

Heisenberg uncertainty principle(s):

 $\Delta x \Delta p_x \ge \hbar$

 $\Delta t \Delta E \geq \hbar$

Probability vs Determinism

- Classical view: if the initial conditions (positions and velocities) and the forces are known, the motion is determined (always the same).
- Quantum world: particles released in the same way will not all end in the same place!
 - double slit experiment with single photons or electrons
- Probability in QM is not a limitation of our tools it's inherent.
- Space-time description of atoms and electrons is not possible. They are spread over time/space.

Particles and Waves

- Light is EM waves, what is oscillating is electric and magnetic fields
- When we are talking about other particles, what is oscillating?
 - Probability.

 $\psi(x, y, z, t)$

wave function =
probability amplitude

 $|\psi|^2$ is the probability to find a particle at x, y, z, at time t

- Electrons do not follow orbits they form "clouds"
- The ground state in hydrogen is spherically symmetric (not a circle!)

Atom: Quantum Numbers

• Principal quantum number *n*: like Bohr said

$$E_n = -\frac{13.6 \text{ eV}}{n^2}$$

- *n* can have any integer value (1, 2, ...)
- It determines the total energy of a state in the hydrogen atom

Atom: Quantum Numbers

- Orbital quantum number *l*: yes, the angular momentum is quantized
- *l* can be an integer from o to (*n*-1)

larger than $l\hbar$

$$L = \sqrt{l(l+1)}\hbar$$

- Magnetic quantum number m_l: determines the momentum direction
- m_l can be an integer between -l and l

nothing known about L_x , L_y

 $L_{\tau} = m_{l}\hbar \leftarrow$

Electron Cloud Shapes

Spin

- Each spectral line of hydrogen actually consists of two
- The splitting is $\sim (Z\alpha)^2$, where $\alpha = \frac{ke^2}{\hbar c} \approx \frac{1}{137}$
 - Hypothesis: this is due to angular momentum associated with spinning of the electron (planetary model)
 - Can't be true (electrons are point-like), however electrons do have some intrinsic property which looks like an angular momentum
- m_s can be +1/2 or -1/2

$$S_z = m_s \hbar$$

Pauli Exclusion Principle

- No two electrons in an atom can occupy the same quantum state
- Closely related to spin: refer to particles with halfinteger spin (electrons, protons), but not to particles with integer spin (photons)

fermions

bosons

The Periodic Table of Elements

Quantum Mechanics of Atoms

The Periodic Table of Elements

1 15																	
H 1 Hydrogen											He 2 Helium						
15 ¹	2 11A		Grou	pnew — 🛏 1	IA 🔫	— Group old	1					Metalloids 13 IIIA	14 IVA	15 V.A	Nonmetals 16 VIA	17 VILA	4.00280 1s ²
Li 3	Be 4]	S_{j}	mbol —	(19 🛪	— Atomic nu	ımber					B 5	С 6	N 7	0 8	F 9	Ne 10
Lithium 6.941	9.012182			Name	Potassium 39.0983 ⊸	- Atomic mas	19					Boron 10,81	Carbon 12.011	Nitrogen 14.0067	Oxygen 15.9994	Fluorine 18.9984	Neon 20.179
2s'	2s²		-		4s ¹	(averaged ad	cording to					2p'	2p ²	2p3	2p⁺	2p ³	2p ⁶
Na 11	Mg 12		con	figuration	Si 14	P 15	S 16	CI 17	Ar 18								
22.989768	24.3050							26.9815	28.0855	30.9738	32.06	35,453	39.948				
3s1	3s²	з шв	4 IVB	5 VB	6 V1B	7 VIIB	Meta S VIIIB	9 VIIIB	10 VIIIB	11 1B	12 11B	3p'	3p²	3p³	3p⁴	3p³	Зр ⁶
K 19 Poteccium	Ca 20	Sc 21	Ti 22	V 23	Cr 24	Mn 25 Maggargaga	Fe 28	Co 27	Ni 28 Nidkal	Cu 29	Zn 30	Ga 31 Gallien	Ge 32 Gormanium	As 33	Se 34 Selenim	Br 35 Promine	Kr 36 Korton
39.0983	40.078	44.955910	47.88	50.9415	51,9961	54.93805	55.847	58.93320	58.69	63.546	65.39	69.723	72.61	74.92159	78.98	79.904	83.80
4s ¹	4s ²	3d ¹ 4s ²	3d²4s²	3d ³ 4s ²	3d ⁵ 4s ¹	3d ⁵ 4s ²	3d ⁶ 4s²	3d ⁷ 4s ²	3d ⁶ 4s ²	3d ¹⁰ 4s ¹	3d ¹⁰ 4s ²	4p'	4p²	4p ³	4p ⁴	4p ⁵	4p ⁶
Rb 37 Bubidium	Sr 38 Strontium	Y 39 Vtrium	Zr 40 Zirconium	Nb 41 Niobium	Mo 42 Nok-bdenum	Tc 43 Technetium	Ru 44 Buthenium	Rh 45 Bhodium	Pd 46 Palladium	Ag 47 Silver	Cd 48 Cadmium	in 49 Indium	Sn 50 Tin	Sb 51 Antimony	Te 52 Tellurium	I 53	Xe 54 Xenon
85.4678	87.62	88.90585	91.224	92.90638	95.94	(98)	101.07	102.90550	106.42	107.8682	112.411	114.82	118.710	121.75	127.60	128.905	131.30
56 ¹	5s²	4d ¹ 5s ²	4d²5s²	4d ⁴ 5s ¹	4d ^a 5s'	4d ⁸ 5s ²	4d ⁷ 5s ¹	4d ⁸ 5s ¹	4d ¹⁰ 5s ⁰	4d ¹⁰ 5s ¹	4d ¹⁰ 5s ²	5p'	5p ²	5p3	5p ⁴	5p ³	5p ⁶
Cs 55	Ba 56	57 - 71	Hf 72	Ta 73	W 74	Re 75 Rhanim	Os 76	lr 77	Pt 78	Au 79	Hg 80	TI 81	Pb 82	Bi 83	Po 84	At 85	Rn 88 Parden
132.90543	137.327	series	178.49	180.9479	183.85	186.207	190.2	192.22	195.08	196.96654	200.59	204.3833	207.2	208.98037	(209)	(210)	(222)
6s ¹	6s²		5df8s²	5d ³ 6s ²	5d ⁴ 6s ²	5d ⁸ 8s ²	5d ⁶ 6s ²	5d [°] 8s²	5d ⁹ 8s1	5d [™] 8s'	5d ^{i 0} 6s ²	6p'	6p²	6p3	6p⁴	6p³	6p⁵
Fr 87	Ra 88	89 - 103	Unq 104	Unp 105	Unh 106	Uns 107	108	109									
(223)	(226)	Actinide series	(261)	(262)	(263)	Unnilseptium (262)											
75 ¹	7s ²		6d ² 7s ²	6d ³ 7s ²	6d ⁴ 7s ²												

	La	57	Ce	58	Pr 59	Nd	60	Pm 61	Sm 62	Eu 63	Gd 64	Tb 65	Dy 66	Ho 67	Er 68	Tm 69	Yb 70	Lu 71	
Lanthanide	Lanthanide Lantha		Cerium		Praseodymiun	Necdymium		Promethium	Samarium	Europium	Gadolinium	Terbium	Dysprosium	Holmium	Erbium	Thulium	Ytterbium	Lutetium	
series	138.9	055	140	.115	140.90765	144.3	24	(145)	150.36	151.965	157.25	158.92534	162.50	164.93032	167.28	168.93421	173.04	174.967	
	5d ¹ 6s	2	4f ¹ 50	d ⁱ es²	4f ³ 6s ²	4f ⁴ 6s ²	1	4f ³ 6s ²	4f ⁶ 6s ²	$4\overline{f} \Theta s^2$	4f ⁷ 5d ¹ 6s ²	4f ⁹ 6s ²	4f ¹⁰ 6s ²	4f ¹¹ 6s ²	4f ¹² 6s ²	4f ¹³ 6s ²	4f ¹⁴ 6s ²	4f ¹⁴ 5d ¹ 6s ²	

	Ac	89	Th	90	Pa	91	U	92	Np	93	Pu	94	Am	95	Om	96	Bk	97	Cf	98	Es	99	Fm	100	Md	101	No	102	Lr 103	1
Actinide	Actin	nium	Thor	ium	Prota	stinium	Un	anium	Neptu	nium	P L	utonium	Ame	ricium	C	urium	Ber	kelium	Cal	lifornium	Einst	le inium	Fer	mium	Mena	lelevium	Nobe	lium	Lawrencium	I
series	(22	Ż7)	232.0	381	221	03588	23	8.9272	h	Acs	of	244) on	s (2	43)	0	247)		(247)		(251)	(2	252)	(2	257)	(2	258)	(259	9)	2 (280)	
	6d ¹ 7	s²	6d ² 7	5 ²	Sfe	Bd'7s ²	5f	¹ 6d ¹ 7s ²	5f*8c	752	5f	6d ⁰ 7s ²	Sfe	d ⁰ 7s ²	5f ⁷	6d ⁱ 7s²	5f	°6d°7s²	5f"	°6d°7s²	5f ¹ 6	8d ⁰ 7s²	5f ¹² (Bch ⁰ 7 s ²	5f ¹³ 6	3d ⁰ 7s ²	6d ⁰ 7s	2	6d ¹ 7s ²	