Electric field and potential

Electric force on a point charge: $\vec{F} = q\vec{E}$ Electric field of a point charge: $E = k \frac{q}{r^2}$ Force between two point charges: $F = k \frac{q_1 q_2}{r^2}$ Electric potential of a point charge: $V = k \frac{q}{r}$ Potential energy of two point charges: $U = k \frac{q_1 q_2}{r}$

Capacitors

Capacitance: $C = \frac{Q}{V}$ Parallel-plate capacitor: $C = \varepsilon_0 \frac{A}{d}$ Electric field in a capacitor: $E = \frac{V}{d}$ Capacitors in parallel: $C = C_1 + C_2$ Capacitors in series: $\frac{1}{C} = \frac{1}{C_1} + \frac{1}{C_2}$

Resistors

Ohm's law: $I = \frac{V}{R}$

Resistance and resistivity: $R = \rho \frac{l}{A}$ Resistors in series: $R = R_1 + R_2$ Resistors in parallel: $\frac{1}{R} = \frac{1}{R_1} + \frac{1}{R_2}$

Kirchhoff's rules

Junctions: $\sum I_{in} = \sum I_{out}$ Loops: $\sum \mathcal{E} = \sum IR$

Magnetic field and magnetic forces

Magnetic force on a point charge: $F = qvB\sin\varphi$ Magnetic field of a wire: $B = \frac{\mu_0 I}{2\pi r}$ Force between parallel wires: $F = l\frac{\mu_0 I_1 I_2}{2\pi r}$ Magnetic field of a solenoid: $B = \mu_0 \frac{N}{I}I$

Electromagnetic induction

Magnetic flux through a loop: $\Phi = BA \cos \varphi$ Faraday's law: $\mathcal{E} = -\frac{\Delta \Phi}{\Delta t}$ Slide-wire generator: $\mathcal{E} = -Blv$ Loop rotating in magnetic field: $\mathcal{E} = \omega AB \sin \omega t$

Electromagnetic waves

 $k = \frac{2\pi}{\lambda}$ $f = \frac{\omega}{2\pi}$ $c = \frac{\omega}{k} = \lambda f$ Electric field energy density: $u_E = \frac{1}{2}\varepsilon_0 E^2$ Magnetic field energy density: $u_B = \frac{1}{2\mu_0}B^2$

Geometric optics

Reflection: $\theta_i = \theta_r$ Refraction: $n_a \cos \theta_a = n_b \cos \theta_b$ Spherical mirror: $f = \frac{R}{2}$ Thin lens: $\frac{1}{f} = (n-1)\left(\frac{1}{R_1} - \frac{1}{R_2}\right)$ Positions of the object and the image: $\frac{1}{s} + \frac{1}{s'} = \frac{1}{f}$ Lateral magnification: $m = -\frac{s'}{s}$ Compound lenses: $\frac{1}{f} = \frac{1}{f_1} + \frac{1}{f_2}$

Interference and diffraction

Double slit interference: maxima at $y_m = Rm\frac{\lambda}{d}$, minima at $y_m = R\left(m + \frac{1}{2}\right)\frac{\lambda}{d}$ Single slit diffraction: minima at $y_m = Rm\frac{\lambda}{a}$ Grating: $d\sin\theta = m\lambda$

Photons, electrons, and atoms

De Broglie wavelength: $\lambda = \frac{h}{p}$ Photoelectric effect: $eV_0 = hf - \varphi$ Bohr's atom model: $E_n = -\frac{13.6 \text{ eV}}{n^2}$

Useful constants:

$$\begin{split} \varepsilon_0 &= 8.85 \times 10^{-12} \text{ C}^2/(\text{N} \cdot \text{m}^2) \\ k &= 1/4\pi\varepsilon_0 = 8.99 \times 10^9 \text{ N} \cdot \text{m}^2/\text{C}^2 \\ \mu_0 &= 4\pi \times 10^{-7} \text{ T} \cdot \text{m/A} \\ c &= 3 \times 10^8 \text{ m/s} \\ h &= 6.626 \times 10^{-34} \text{ J} \cdot \text{s} = 4.136 \times 10^{-15} \text{ eV} \cdot \text{s} \\ e &= 1.60 \times 10^{-19} \text{ C} \end{split}$$