M1 Four long wires are attached to the corners of a square perpendicular to its surface. Each wire carries the same current \(I \). What is the direction of the net magnetic field in the center of the square? Write the letter of the arrow parallel to the field direction or 0 if you believe that the field is zero.

(1) Field direction: ____
(2) Field direction: ____
M2 Three wire frames (a circle, a square, and an equilateral triangle) are rotating with the same angular velocity ω in a constant magnetic field B. In which case the amplitude of induced emf is the largest?

A. a.
B. b.
C. c.
D. The same in all cases.
Two ideal solenoids L_1 and L_2 are connected as shown below. Each solenoid has $N = 1000$ turns. Assuming that the solenoids are far away from each other so one can neglect their mutual inductance, what is the ratio of the magnetic fields in the centers of the solenoids B_1/B_2?

A. $1/4$
B. $1/2$
C. 1
D. 2
E. 4
M4 A circuit is made of four resistors and a switch S, as shown below. If the switch is closed, the equivalent resistance of the circuit

A. increases.
B. stays the same.
C. decreases.
P1 Find the equivalent capacitance of the circuit shown below.
P2 In the circuit below, $\mathcal{E}_1 = 10 \text{ V}$, $\mathcal{E}_2 = 5 \text{ V}$, $R_1 = 50 \Omega$, $R_2 = 10 \Omega$. Calculate the current through battery \mathcal{E}_2.
P3 An uncharged RC circuit ($R = 100 \, \Omega$, $C = 10 \, \mu F$) is connected to a battery. At time $t=1.5 \, \text{ms}$ after the switch is closed, the current in the circuit is 22 mA. What is the battery voltage?

![Diagram of an RC circuit with a battery and switch]
In a slide-wire generator, a 1 cm rod moving at velocity 1 cm/s generates induced emf 0.001 V. What is the magnetic field?