Chapter 1

Physics and Measurements
Length, Mass, and Time

- These are the three fundamental quantities mechanics is concerned about.
- All other quantities in mechanics can be expressed in terms of these three:
 - distance: it’s length, too (length of a pole = distance between its ends)
 - width, height, depth: it’s all length
 - frequency: how many times something occurs per unit time (so it’s defined through time)
 - speed: distance traveled per unit time
 - temperature: mechanics doesn’t care 😊
Measurements and Standards

- Physics wants to measure everything
 - measure = assign a number
- Measurements are relative: we compare properties of an object to something we already know
 - a tree is as tall as a ten-storey building
 - the FAST radio telescope is as large as 30 football fields
- To make measurements reproducible, the results should be compared to standards, which must
 - be readily accessible
 - yield the same result anywhere in the Universe
 - not change with time
Time

- Unit: second
- Old definition: \(\left(\frac{1}{24} \right) \left(\frac{1}{60} \right) \left(\frac{1}{60} \right) \) of mean solar day
 - can’t use this definition away from Earth
 - Earth rotation is irregular and slowing down
- Modern definition: 9 192 631 770 \(\times \) period of vibration of radiation from the Cesium-133 atom
 - it’s “indirect” because what’s measured is frequency, not the time interval – but that’s OK (T=1/f)
 - it’s practical (easy to make a clock), works everywhere in the Universe, and is perfectly stable (as far as we know)
Length

• Unit: meter

• Old definitions:
 • fraction of Earth’s perimeter
 • artifact-based – a bar stored in France
 • wavelength of orange-red light emitted by a Krypton-86 lamp

• Modern definition: the distance traveled by light in vacuum during \(\frac{1}{299\,792\,458} \) second
 • speed of light is postulated (and can’t be measured)
 • there is no need to have two separate standards – it follows from a deep relation between space and time revealed by the special theory of relativity
Mass

- Unit: kilogram
- Old definition
 - artifact-based – a special alloy cylinder kept in France
- Modern definition
 - it’s still the same 😞
- What to do? Follow the meter 😊
 - Avogadro project: fix the mass of an atom (Silicon-28)
 - Watt balance: fix Planck’s constant
- No official decision yet
Dimensional Analysis

Two reasons to do it:
 - weed out errors in calculations
 - evaluate dependencies between the quantities

Is the formula for position $x = \frac{1}{2} at^2$ correct?
 - $[a]=L/T^2$ $[t]=T$ $[x]=L$ – correct 😊

If we know acceleration and time, how could position depend on them?
 - if there are no other factors, we can assume that $x = a^n t^m$
 - $L=(L/T^2)^n T^m$ $n=1$; $m-2n=0$ \Rightarrow $m=2$ $x \sim at^2$
SI Units

- **Fundamental units:** meter m, kilogram kg, second s
- **Prefixes:** Xm, Xg, Xs, where X is one of SI symbols below:

<table>
<thead>
<tr>
<th>SI PREFIX</th>
<th>SI SYMBOL</th>
<th>SI UNIT CONVERSION FACTOR (STANDARD FORM)</th>
<th>FACTOR (POWER)</th>
<th>FACTOR LANGUAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>yotta</td>
<td>Y</td>
<td>1 yottametre = 1 000 000 000 000 000 000 000 000 metres</td>
<td>10^{24}</td>
<td>septillion</td>
</tr>
<tr>
<td>zetta</td>
<td>Z</td>
<td>1 zettametre = 1 000 000 000 000 000 000 000 000 metres</td>
<td>10^{21}</td>
<td>sextillion</td>
</tr>
<tr>
<td>exa</td>
<td>E</td>
<td>1 exametre = 1 000 000 000 000 000 000 000 000 metres</td>
<td>10^{18}</td>
<td>quintillion</td>
</tr>
<tr>
<td>peta</td>
<td>P</td>
<td>1 petametre = 1 000 000 000 000 000 000 000 000 metres</td>
<td>10^{15}</td>
<td>quadrillion</td>
</tr>
<tr>
<td>tera</td>
<td>T</td>
<td>1 terametre = 1 000 000 000 000 000 000 000 000 metres</td>
<td>10^{12}</td>
<td>trillion</td>
</tr>
<tr>
<td>giga</td>
<td>G</td>
<td>1 gigametre = 1 000 000 000 000 000 000 000 000 metres</td>
<td>10^{9}</td>
<td>billion</td>
</tr>
<tr>
<td>mega</td>
<td>M</td>
<td>1 megametre = 1 000 000 metres</td>
<td>10^{6}</td>
<td>million</td>
</tr>
<tr>
<td>kilo</td>
<td>k</td>
<td>1 kilometre = 1 000 metres</td>
<td>10^{3}</td>
<td>thousand</td>
</tr>
<tr>
<td>hecto</td>
<td>h</td>
<td>1 hectometre = 100 metres</td>
<td>10^{2}</td>
<td>hundred</td>
</tr>
<tr>
<td>deca</td>
<td>da</td>
<td>1 decametre = 10 metres</td>
<td>10^{1}</td>
<td>ten</td>
</tr>
<tr>
<td>deci</td>
<td>d</td>
<td>1 decimetre = 0.1 metres</td>
<td>10^{-1}</td>
<td>tenth</td>
</tr>
<tr>
<td>centi</td>
<td>c</td>
<td>1 centimetre = 0.01 metres</td>
<td>10^{-2}</td>
<td>hundredth</td>
</tr>
<tr>
<td>milli</td>
<td>m</td>
<td>1 millimetre = 0.001 metres</td>
<td>10^{-3}</td>
<td>thousandth</td>
</tr>
<tr>
<td>micro</td>
<td>µ</td>
<td>1 micrometre = 0.000 001 metres</td>
<td>10^{-6}</td>
<td>millionth</td>
</tr>
<tr>
<td>nano</td>
<td>n</td>
<td>1 nanometre = 0.000 000 001 metres</td>
<td>10^{-9}</td>
<td>billionth</td>
</tr>
<tr>
<td>pico</td>
<td>p</td>
<td>1 picometre = 0.000 000 001 metres</td>
<td>10^{-12}</td>
<td>trillionth</td>
</tr>
<tr>
<td>femto</td>
<td>f</td>
<td>1 femtometre = 0.000 000 000 001 metres</td>
<td>10^{-15}</td>
<td>quadrillionth</td>
</tr>
<tr>
<td>atto</td>
<td>a</td>
<td>1 attometre = 0.000 000 000 000 001 metres</td>
<td>10^{-18}</td>
<td>quintillionth</td>
</tr>
<tr>
<td>zepto</td>
<td>z</td>
<td>1 zeptometre = 0.000 000 000 000 000 001 metres</td>
<td>10^{-21}</td>
<td>sextillionth</td>
</tr>
<tr>
<td>yocto</td>
<td>y</td>
<td>1 yoctometre = 0.000 000 000 000 000 000 001 metres</td>
<td>10^{-24}</td>
<td>septillionth</td>
</tr>
</tbody>
</table>
Conversion of Units

- Simple conversions:
 - 10 in = 10 in \(\times\) (2.54 cm/1 in) = 25.4 cm
 - 2 cm = 2 cm \(\times\) (1 in/2.54 cm) = 0.787 in

- Complex conversions:
 - 1 m² = 1 m² \(\times\) (100 cm/1 m)² = 10 000 cm²
 - 1 m/s = 1 m/s \(\times\) (1 km/1000 m)/(1 h/3 600 s) = 3.6 km/h
 - 60 mi/h = 60 mi/h \(\times\) (1 609 m/1 mi)/(3 600 s/1 h) = 29 m/s
Scientific Notation

- Scientific notation = a number expressed in form $a \times 10^b$
 - can be done in more than one way
- Normalized scientific notation: $1 \leq a < 10$
 - not defined for zero
 - if $b=0$, the 10^b factor is omitted
- Engineering notation: b is a multiple of 3
 - makes it easy to match prefixes
Order of Magnitude Estimates

- Order of magnitude estimate = a power of ten
- Prescription:
 - write the number in normalized scientific notation: $x = a \times 10^b$
 - if $a < \sqrt{10}$, $x \sim 10^b$, otherwise $x \sim 10^{b+1}$
Significant Figures

• When quantities are measured, the results are known within experimental uncertainty

• 15 000 m – not clear
 • should we trust all 5 digits? (probably not)

• 1.5×10^4 m – better
 • there are just two digits to trust (could be anywhere between 14 500 m and 15 500 m)
 • 1.5×10^4 m and 1.50×10^4 m mean different things

• $(1.5 \pm 0.1) \times 10^4$ m – a lot of information
 • in a paper, this would mean that the probability that the actual quantity is between 14 900 m and 15 100 m is 68%
Operations with Approximate Numbers

- When adding/subtracting, keep the smallest number of decimal places
 - $1.40 + 2.41 = 3.81$ (3 s.d. + 3 s.d. -> 3 s.d.)
 - $1.4 + 2.41 = 3.8$ (2 s.d. + 3 s.d. -> 2 s.d.)
 - $1.205 - 1.203 = 2 \times 10^{-3}$ (4 s.d. - 4 s.d. -> 1 s.d.)
 - $12.05 - 1.203 = 10.85$ (4 s.d. - 4 s.d. -> 4 s.d.)

- When multiplying/dividing, keep the smallest number of significant digits
 - $1.40 \times 2.41 = 3.37$ (3 s.d. \times 3 s.d. -> 3 s.d.)
 - $\pi(2.1)^2 = 14$ (s.d. \times 2 s.d. -> 2 s.d.)