Chapter 2

Motion in One Dimension

Position, Displacement, and Distance

- Position x = location w.r.t. to a chosen reference point
- Displacement = difference between final and initial positions of a particle

$$\Delta x = x_f - x_i$$

- Distance = length of a path followed by a particle
 - Not the same as the distance between two points
 - Not the same as the magnitude of displacement

position

Speed and Velocity

- Speed: scalar (= distance / time)
 - scalars have magnitude
- Velocity: vector (= displacement / time)
 - vectors have magnitude and direction
- Both have the same units [L]/[T]

Average Velocity and Speed

• Average velocity and speed are always defined w.r.t. to a certain time interval Δt

$$\vec{v}_{avg} = \frac{\vec{d}}{\Delta t}$$
 $v_{x\,avg} = \frac{\Delta x}{\Delta t}$ $v_{avg} = \frac{d}{\Delta t}$

- Average velocity / speed are poor characteristics of particle's motion
 - e.g. if average velocity is zero, the particle might still move during Δt

Instantaneous Velocity and Speed

- We want to specify particle's velocity and speed at any given moment in time, just like we can do it for particle's position
- We can do it by considering smaller and smaller time intervals Δt and eventually taking it to the limit $\Delta t \rightarrow 0$

$$\vec{v} = \lim_{\Delta t \to 0} \frac{\vec{d}}{\Delta t}$$
 $v_x = \lim_{\Delta t \to 0} \frac{\Delta x}{\Delta t} = \frac{dx}{dt}$ it's notation for derivative, not d times x!

 Unlike average speed, instantaneous speed is equal to the magnitude of instantaneous velocity

Particle Under Constant Velocity

- If instantaneous velocity v_x is constant, the average velocity over any time interval is equal to v_x
- Assuming $t_f = t$, $t_i = 0$, $\Delta t = t_f t_i = t$,

$$x_f = x_i + v_x t$$

Acceleration

 If particle's velocity changes with time, the particle is called to be accelerating

$$\Delta v_{x} = v_{xf} - v_{xi}$$

 We can introduce average acceleration and instantaneous acceleration in the same way as for velocity

$$a_{x \, avg} = \frac{\Delta v_x}{\Delta t} \qquad a_x = \lim_{\Delta t \to 0} \frac{\Delta v_x}{\Delta t} = \frac{dv_x}{dt} = \frac{d^2 x}{dt^2}$$

Particle Under Constant Acceleration

- If instantaneous acceleration a_x is constant, the average acceleration over any time interval is equal to a_x
- Assuming $t_f=t$, $t_i=0$, $\Delta t=t_f-t_i=t$,

$$v_{xf} = v_{xi} + a_x t$$

For velocity which linearly depends on time,

$$v_{x \, avg} = \frac{v_{xf} + v_{xi}}{2}$$
 $x_f = x_i + v_{x \, avg}t = x_i + v_{x \, i}t + \frac{1}{2}a_x t^2$

$$t = \frac{v_{xf} - v_{xi}}{a_x} \qquad v_{xf}^2 = v_{xi}^2 + 2a_x(x_f - x_i)$$

Motion in One Dimension

Freely Falling Objects

- Freely falling = moving under influence of gravity alone
 - no engines / springs / etc
 - no air resistance
 - it's OK to have initial velocity ≠o
- All freely falling objects have the same motion: constant acceleration

$$g = 9.80 \text{ m/s}^2$$

Derivation of Kinematic Equations

$$a_{x} = \frac{dv_{x}}{dt}$$

$$v_{x} = \frac{dx}{dt}$$

$$dv_{x} = a_{x}dt$$

$$v_{x} = \int a_{x}dt = v_{xi} + a_{x}t$$

$$v_{x} = \int v_{x}dt = (v_{xi} + a_{x}t)dt$$

$$v_{x} = \int v_{x}dt = v_{xi} + v_{xi}t + a_{x}t$$

$$v_{x} = \int v_{x}dt = v_{xi} + v_{xi}t + a_{x}t$$