Chapter 8

Conservation of Energy
Isolated Systems

- Ways to transfer energy to a system: work; waves; heat; matter transfer; electric currents; E/M radiation; etc.
 - mechanical energy in a non-isolated system does not have to be conserved
- Isolated system: no energy crosses the system boundary by any method
 - mechanical energy in an isolated system may or may not be conserved
Conservation of Mechanical Energy

- For a system which only includes conservative forces, the total mechanical energy is conserved

\[W = -\Delta U = \Delta K \]

\[K_i + U_i = K_f + U_f \]

- Gravitation:

\[\frac{mv_i^2}{2} + mgy_i = \frac{mv_f^2}{2} + mgy_f \]

- Spring:

\[\frac{mv_i^2}{2} + \frac{mx_i^2}{2} = \frac{mv_f^2}{2} + \frac{mx_f^2}{2} \]
Conservative Forces + Friction

- Mechanical energy is no longer conserved – part of it is wasted on friction

\[\Delta K = W = \int F \, dx = \int (F_c + F_k) \, dx = -\Delta U + \int F_k \, dx \]

\[K_f + U_f = K_i + U_i - F_k \, d \]

Conservation of Energy
Power

- Power = work/time
- Instantaneous power: rate (work per unit time)
 \[P = \frac{dW}{dt} = \vec{F} \frac{d\vec{r}}{dt} = \vec{F} \vec{v} \]
- More generally, power = rate of energy transfer