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Repeatability and reproducibility

@ Repeatability and reproducibility are principal features of an
experiment, let’s try to define them

Repeatability J

The experiment is repeatable if we can do it again and get the same result

Reproducibility J

The experiment is reproducible if someone can repeat it and get the same result

@ Are these definitions good?
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Repeatability and reproducibility

@ Measurements never yield the same result due to

> intrinsic principles of nature (quantum mechanics)
» many minor factors affecting the measurement (random errors)

@ Here are better definitions:

Repeatability

The experiment is repeatable if we can do it again and get a consistent result

Reproducibility

The experiment is reproducible if someone else can repeat it and get a consistent

result
V.

@ The whole point here is the word “consistent”
> to figure out what it means, we'll need to learn how to deal with results
that change from experiment to experiment
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What is probability?

o Consider an experiment that has a set of possible outcomes
» a coin can land heads or tails (2 outcomes)
» rolling a dice can give 6 possible outcomes (1, 2, 3, 4, 5, 6)
» measuring a projection of electron’s spin onto some axis has two

possible results +—

@ The number of possibilities does not have to be finite
» measuring the energy of a quantum harmonic oscillator can yield
hw 3hw S5hw
27 27 27
@ If we do the same measurement N times and get a certain output M
times then the probability to get this output is M/N
> in general, the M/N ratio will fluctuate from series to series
» the law of large numbers: there exists “objective” probability P which
is “close” to the experimental result M/N for “large” N

@ Sum of probabilities of all possible outputs is 1:
LR
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Continuous probability

@ Experimental output can be either a set of discrete values (finite or
infinite) or any value withing a certain range (which can be limited or
unlimited)

@ There are no strong boundaries between the two possibilities:

» the harmonic oscillator has continuous energy spectrum when treated
classically, but discrete spectrum in quantum mechanics

> in solid state theory, conduction and valence energy bands are
technically made of discrete levels but their number is so large (~ Na)
that in practice they are considered continuous

> in a hydrogen atom the electron energy spectrum has both a
continuous and a discrete part
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Continuous probability (2)

@ In continuous case, the probability of discrete outputs is replaced with
a probability density function f(x)
» the probability for output x to be between x; and x; is
X

2
P(x1 < x <x)= f(x) dx

X1

@ Similar to discrete probability, p.d.f. has to be normalized:

/ " f(x)dx=1

Xmin

> Xmin Can be —oo and/or Xmax can be +oo

@ In general, if both discrete and continuous outputs are possible,

Xmax

ZP,-—F/X f(x)dx=1

‘min
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Frequentist approach to probability

@ We have a hypothesis (theory) that governs random outcomes of our
experiment, this hypothesis may be true or false
@ The experimental data has a certain probability which is defined as

M
the limit P = |Iim —
N—oo N

» we can't have an infinite series of experiments, so we take the observed

M N . . .
value of — as an approximation for P and assign some uncertainty to it

» based on how significant is the difference between the predicted and
observed value of P, we decide whether the original theory is valid

Frequentist:

there is one hypothesis that can be true or false
the experimental outcome has certain probability
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Example 1

@ Problem:
> | have a coin that | tossed 10 times and got 6 heads and 4 tails. Can |
reject the hypothesis that tails and heads are equally probable, at the
95% confidence level?
@ Solution:
> the probability to get 6 heads and 4 tails is expected to be
10!

@0.56(1 —0.5)* =0.21,

which is more than 0.05, therefore the hypothesis can't be rejected

@ Remarks:

» if the outcome was 10 heads and 0 tails, the probability of such
outcome would be 0.5% = 1073, so the hypothesis would have to be
rejected

» note that 0.05 is not the probability that our hypothesis is true, instead
it is the probability that a true hypothesis is rejected due to randomness
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Bayesian approach to probability

@ We have data D which represents the result of an experiment

» consider a set of hypotheses (theories) H; which may yield this
particular result with prior probabilities P(D|H;)

> the probability for a given hypothesis H; to be true can be calculated
from Bayes' theorem

(D) = PGS p(D) = 3 P(DIH)P(H)
Jj

Bayesian:

there are many hypotheses, each has a probability to be true
the experimental outcome is fixed
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Example 2

@ Problem:

» 5% of the population are sick

98% of persons tested positive are sick

» 4% of persons tested negative are sick

> If a person is tested positive, what's the probability he's sick?

v

@ Solution:
» we have two hypotheses: a person is sick (H;, P(H;) = 0.05) and a
person is healthy (Hy, P(H;) =1 — P(H;) = 0.95)
> the experimental result D is that the person is tested positive
» the conditional probabilities for result D are P(D|H;) = 0.98 and

P(D|H,) = 0.04
0.98 - 0.05
lculation yields P(H;|D) = _o.
> caleulation vields P(H1[D) = 505 05 1 0.04 0.05 ~ °-°0
@ Remarks:

» Frequentist couldn’t say anything definite in this situation, because
there is not enough data (just one measurement)
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Comparison of the two approaches

@ Bayesian approach is particularly useful if the theory has certain
parameters and we want to evaluate those parameters based on
experimental results
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Example 3

@ Problem:
» | have a coin with (unknown) heads probability p and tails probability
1— p. After | tossed it 14 times, | got 10 heads and 4 tails. What is the
probability that in the next two tosses there will be two heads in a row?
@ Frequentist solution:

> the estimate for p from our experiment is p = 10/14 = 0.714
> the probability to get two heads is P(hh) = (0.714)% = 0.51
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Example 3 (2)

@ Bayesian solution:

_ P(DIp)P(p) _ 144, 4 _
P(p|D) = “BD) P(Dlp) = {orarP (1= p)" = f(p,11,5)
where f is probability density function of the beta distribution:
1 ! F(a)l(b)
f _ a—1 1— b—1 B _ / a—1 1— b—1 _

@ the choice of P(p) (prior probability distribution) is up to us

@ a convenient choice for P(p) is a conjugate prior, such that P(p) and
P(p|D) belong to the same pdf family: P(p) = f(p, a, b)

p,11,5)f(p, a, b)
P(D)

P(pID) = L i

— const p(1 — p)*p* (1 — p)*!

const p*®*37L(1 — p)**b=1 = f(p,10 4 a,4 + b)
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Example 3 (3)

@ For a given p, the probability to get two heads in a row is P(hh|p) = p?
@ Given the results D of the experiment,

P(HID) = [ P(hhlp)P(pID) dp =

1 ' 2 10+a—1 4+ b—
- 1— +b 1d _
B(10+a,4+b)/0 PP (1=p) P

1 ! _ _ B(12+a,4+b
/ p12+a 1(1 _ p)4+b 1 dp _ ( )
B(10+a,4+ b) Jy B(10+ a,4+ b)

@ Choice 1: flat prior, uniform p distribution, a=b=1, P(p) =1
» P(hh|D) = B(13,5)/B(11,5) = 0.485

@ Choice 2: any mean of the p distribution is equally likely, a= b =10
» P(hh|D) = B(12,4)/B(10,4) = 0.524

@ In general, if in a preliminary series we have seen a heads and b tails, then it
makes sense to pick B(a, b) as a prior
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