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Mean, variance, covariance

@ mean = expected value of x

discrete : (x) = Z Pix;  continuous : (x) = / f(x)x dx

e variance = expected value of (x — (x))?

o? = ((x = {x))*) = (x*) = (x)?

@ standard deviation o = v of variance

@ covariance of two variables x and y:
cov(x,y) = {(x = )y — ())) = (xy) — (x) ()
@ correlation coefficient of two variables:

p(x,y) = cov(x,y)/(oxoy)
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Binomial distribution

e Consider an experiment which has two possible outputs: 1 (with
probability p) and 0 (with probability g =1 — p). In a series of n
experiments, what is the probability to get k 1's and (n — k) 0's?

» the number of ways to chose k experiments out of n (disregarding

. n:
Order) 1S m

» k experiments have probability p and n — k experiments have
probability g, so the probability to get k 1's and (n— k) O's is

n! X

n—k
(n—kyktP 9

P(k) =

n
» check the normalization: Z P(ky=(p+q)"=1
k=0
@ Binomial distribution has mean value np and variance np(1 — p)
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Examples of binomial distribution
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Multinomial distribution

@ If an experiment has d possible outcomes and there are n trials then
the probability of getting ny,...,ny outcomes of type 1,....d is

ol d d
. n n
P(nl,...nd):ﬁpll...pdd, g pi=1, E nj=n
1t ng! ey =

» this distribution describes bin contents of a histogram with d bins and
the total number of entries n

» each individual bin content follows binomial distribution, but contents
of different bins are correlated
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What happens when n becomes large?

o If pis not close to either 0 nor 1, then according to Stirling’'s formula,

n! knkann ek ek .« rnp\k ([ ng \"¥
CE VA k)nkkkpq _(k> n—k

2

X
» using logarithm expansion In(1 4 x) = x — 5 + ... one can show that

k n—k o 2
n [("P) (;2) ] o (k)
k n—k 2npq
o If pis small so that A = np is small compared to n, then
n! pkqnfk:n(n—l)...(n—k—l—l) A k 1_5 "7k:
(n— k)k! k! n n

nn—1 n—k+1)\" A\ A\ TFa
= , 1-2) (1-2) ~Z-e
n n n kI n n
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Gaussian distribution

@ If the number of experiments n is large and p is not close to 0/1 then
the binomial distribution becomes Gaussian (or normal)

(x — x0)?

! 202

— e
V2mo?

A sum of a large number of independent variables is approximately normally distributed, no

f(x) =

matter what is the underlying distribution of the variables (central limit theorem).

ogf TN 20, 6205

0.7; —X,=0, 0=1.0é

. _ . E — %,=0, 0=2.01

@ Gaussian distribution has mean 0.6t — 72, 0=1.0]
value xp and variance o2 0.5- E

@ Binomial distribution can be 047 E
approximated by a Gaussian 03¢ E
distribution with xg = np and 0.2- B E
0% = npq ot j

= i} Tl (n S|
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Poisson distribution

@ If the number of experiments n is large and p is small but their
product A\ = np is moderate (1-10) then the binomial distribution
becomes Poisson

Akg=A

k!
P(k) is the probability of a given number of events to occur in a fixed interval of time if these

events occur with a known average rate )\ independently from each other

— T
- \=1

0.35F
[ - \=2
. C 0.3 -
@ Poisson distribution has both mean F O A5
0.25F =10

value and variance equal to A

@ Poisson distribution is the limit case of 0.2-
binomial distribution when n — oo and 0.15
np remains fixed ot

@ If X is large then Poisson distribution :

0.05¢
becomes very similar to Gaussian g
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x? distribution

@ This is the distribution of a sum of the squares of k independent
standard normal random variables (xo =0, o = 1)

1

k_1 _x
f(x) = x37le~3
22T (%)
2
e e i
@ If k variables x; are distributed normally : k=2 .
2 i —k=4 1
Xi — Xoi . . . L il
then E g is distributed as x? 0.4 —ks6
- o; ¥ _ 1
i i [ —k=8 ]
@ 2 distribution has mean value k and 0'3:’ g
variance 2k ]
. . 2 02? i
@ per central limit theorem x“ becomes : — 1
Gaussian as k increases o1 ™~ ]
S
. . . r ]
» in practice, 1/2x2 is much closer 3
H - 0 N R NEWEE SRR NERTS R e
to a Gaussian, with mean of 1 2 3 4567 8 9 10

v2k — 1 and unit variance
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Summary of distributions
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Joint probability

@ Joint probability distribution of a pair of random variables is
probability distribution of all possible pairs of outcomes

> this extrapolates to any number of variables

A pair of coins Multivariate normal distribution (x = xq, ..., xk):
heads tails ) et

heads 1/4 1/4 F(x) = exp (—Q(X —xp) X (x — xo))

tails  1/4 1/4 (2m)kdet X

@ x and y are independent if and only if £, (x,y) = f(x)f,(y)

@ The method of transformations: Let x = x3, ..., xx be continuous
random variables with joint probability density f(x). Let x = h(y).
Then f,(y) = £(h(y))|J|, where J = 0h/0y.

» Example: a sum of two independent random variables z = x + y

{ x = X  J =1, fo(x, z) = f(x,z — x) = K(x)f,(z — x)

y = z—x

Integrating out x, for z we get f,(z) = /fx(x)fy(z — x) dx
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Sum of random variables

o If x is normally distributed with mean xq and variance o2, y is
normally distributed with mean yp and variance 0)2,, and x and y are
independent, then z = x + y is normally distributed with mean
20 = xo + yo and variance 03 = 0)2( + 0}2,

» If x and y are correlated, z is still normally distributed with mean
2y = Xo + Yo and variance 02 = 0% + 0, + 2po0y

@ Addition of independent random variables also works for Poisson and
x? distributions

» in fact the opposite is also true: if z is Gaussian (Poisson) distributed
and x and y are independent then both x and y are also Gaussian

(Poisson) distributed
@ Central limit theorem: sum of a large number of any random variables
is approximately normally distributed

12 13
X1 2 D1 Xi 3 D1 Xi
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Ratio of random variables

@ Ratio of two independent standard normal random variables follows

1
Cauchy distribution f(x) = ———<
@ Mean of Cauchy distribution is undefined (as are all momenta)
_ /+3T x 1, 1+2°T? Ina
> lim ———dx= lim —In—— = —
Tooo J_7 (14 x?) Tooo 2 14 T2 T

@ A sum of Cauchy distributed variables is Cauchy distributed, so the
central limit theorem fails here
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