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Mean, variance, covariance

mean = expected value of x

discrete : 〈x〉 =
∑
i

Pixi continuous : 〈x〉 =

∫
f (x)x dx

variance = expected value of (x − 〈x〉)2

σ2 =
〈
(x − 〈x〉)2

〉
=
〈
x2
〉
− 〈x〉2

standard deviation σ =
√

of variance

covariance of two variables x and y :

cov(x , y) = 〈(x − 〈x〉)(y − 〈y〉)〉 = 〈xy〉 − 〈x〉 〈y〉

correlation coefficient of two variables:

ρ(x , y) = cov(x , y)/(σxσy )
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Binomial distribution

Consider an experiment which has two possible outputs: 1 (with
probability p) and 0 (with probability q = 1− p). In a series of n
experiments, what is the probability to get k 1’s and (n − k) 0’s?

I the number of ways to chose k experiments out of n (disregarding

order) is
n!

(n − k)!k!
I k experiments have probability p and n − k experiments have

probability q, so the probability to get k 1’s and (n − k) 0’s is

P(k) =
n!

(n − k)!k!
pkqn−k

I check the normalization:
n∑

k=0

P(k) = (p + q)n = 1

Binomial distribution has mean value np and variance np(1− p)
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Examples of binomial distribution
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Multinomial distribution

If an experiment has d possible outcomes and there are n trials then
the probability of getting n1,. . . ,nd outcomes of type 1,. . . ,d is

P(n1, . . . nd) =
n!

n1! . . . nd !
pn1

1 . . . pndd ,
d∑

i=1

pi = 1,
d∑

i=1

ni = n

I this distribution describes bin contents of a histogram with d bins and
the total number of entries n

I each individual bin content follows binomial distribution, but contents
of different bins are correlated
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What happens when n becomes large?

If p is not close to either 0 nor 1, then according to Stirling’s formula,

n!

(n − k)!k!
pkqn−k ≈ nn

en
en−k

(n − k)n−k

ek

kk
pkqn−k =

(np
k

)k ( nq

n − k

)n−k

I using logarithm expansion ln(1 + x) = x − x2

2
+ . . . one can show that

ln

[(np
k

)k ( nq

n − k

)n−k
]
≈ − (k − np)2

2npq

If p is small so that λ = np is small compared to n, then

n!

(n − k)!k!
pkqn−k =

n(n − 1) . . . (n − k + 1)

k!

(
λ

n

)k (
1− λ

n

)n−k

=

n

n

n − 1

n
. . .

n − k + 1

n

λk

k!

(
1− λ

n

)n (
1− λ

n

)−k

≈ λk

k!
e−λ
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Gaussian distribution

If the number of experiments n is large and p is not close to 0/1 then
the binomial distribution becomes Gaussian (or normal)

f (x) =
1√

2πσ2
e
−(x − x0)2

2σ2

A sum of a large number of independent variables is approximately normally distributed, no

matter what is the underlying distribution of the variables (central limit theorem).

Gaussian distribution has mean
value x0 and variance σ2

Binomial distribution can be
approximated by a Gaussian
distribution with x0 = np and
σ2 = npq
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Poisson distribution

If the number of experiments n is large and p is small but their
product λ = np is moderate (1–10) then the binomial distribution
becomes Poisson

P(k) =
λke−λ

k!
P(k) is the probability of a given number of events to occur in a fixed interval of time if these

events occur with a known average rate λ independently from each other

Poisson distribution has both mean
value and variance equal to λ

Poisson distribution is the limit case of
binomial distribution when n→∞ and
np remains fixed

If λ is large then Poisson distribution
becomes very similar to Gaussian
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χ2 distribution

This is the distribution of a sum of the squares of k independent
standard normal random variables (x0 = 0, σ = 1)

f (x) =
1

2
k
2 Γ
(
k
2

)x k
2
−1e−

x
2

If k variables xi are distributed normally

then
∑
i

(xi − x0i )
2

σ2
i

is distributed as χ2

χ2 distribution has mean value k and
variance 2k

per central limit theorem χ2 becomes
Gaussian as k increases

I in practice,
√

2χ2 is much closer
to a Gaussian, with mean of√

2k − 1 and unit variance
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Summary of distributions
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Joint probability

Joint probability distribution of a pair of random variables is
probability distribution of all possible pairs of outcomes

I this extrapolates to any number of variables

A pair of coins
heads tails

heads 1/4 1/4
tails 1/4 1/4

Multivariate normal distribution (x = x1, . . . , xk):

f (x) =
exp

(
−1

2 (x− x0)TΣ−1(x− x0)
)√

(2π)k det Σ

x and y are independent if and only if fxy (x , y) = fx(x)fy (y)

The method of transformations: Let x = x1, . . . , xk be continuous
random variables with joint probability density fx(x). Let x = h(y).
Then fy(y) = fx(h(y))|J|, where J = ∂h/∂y.

I Example: a sum of two independent random variables z = x + y{
x = x
y = z − x

, J = −1, fxz(x , z) = fxy (x , z − x) = fx(x)fy (z − x)

Integrating out x , for z we get fz(z) =

∫
fx(x)fy (z − x) dx
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Sum of random variables

If x is normally distributed with mean x0 and variance σ2
x , y is

normally distributed with mean y0 and variance σ2
y , and x and y are

independent, then z = x + y is normally distributed with mean
z0 = x0 + y0 and variance σ2

z = σ2
x + σ2

y
I If x and y are correlated, z is still normally distributed with mean

z0 = x0 + y0 and variance σ2
z = σ2

x + σ2
y + 2ρσxσy

Addition of independent random variables also works for Poisson and
χ2 distributions

I in fact the opposite is also true: if z is Gaussian (Poisson) distributed
and x and y are independent then both x and y are also Gaussian
(Poisson) distributed

Central limit theorem: sum of a large number of any random variables
is approximately normally distributed
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Ratio of random variables

Ratio of two independent standard normal random variables follows

Cauchy distribution f (x) =
1

π(1 + x2)
Mean of Cauchy distribution is undefined (as are all momenta)

I lim
T→∞

∫ +aT

−T

x

π(1 + x2)
dx = lim

T→∞

1

2π
ln

1 + a2T 2

1 + T 2
=

ln a

π

A sum of Cauchy distributed variables is Cauchy distributed, so the
central limit theorem fails here
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