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Estimators

As a result of an experiment, we have data (measurements), which
are a set of N numbers x = (x1, . . . , xN)

We have a theory describing (we think) our data, which depends on a
number of parameters p = (p1, . . . , pn)

We want to find the best estimates for the theory parameters and also
figure out if the theory is good or bad. For that, we construct a
function of measurements P(x) called an estimator

We want P to be consistent with p, meaning that as the number of
measurements N increases, the probability of P to be near the true
values of p approaches 1 (this is called “convergence in probability”):

∀ε > 0 : lim
N→∞

Prob(|P− p| < ε) = 1

Since the measurements are subject to fluctuations (i.e. xi are
distributed according to their p.d.f.’s), so are the estimators
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Properties of estimators

Bias b: the difference between the expectation value of the estimator
and the true value of the parameter, b = 〈P〉 − p

I in general, we want an “unbiased” estimator for which b = 0
I bias depends on the choice of parameters

F e.g. if P is an unbiased estimator of p it doesn’t mean that P ′ = P2 is
an unbiased estimator of p2

I if P is biased with bias b then P ′ = P − b is unbiased

Efficiency ε: the ratio of the minimum possible variance of any
estimator to the variance of a given estimator, ε = σ2

min/σ
2

I an estimator is called efficient if ε = 1
I in many cases there is a trade-off between bias and efficiency – the

unbiased estimator may have very low efficiency, e.g. due to large
systematic uncertainties
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Estimator for mean

X =
1

N

N∑
i=1

xi

If x1, . . . , xN are unbiased measurements of the same unknown
quantity x with a common mean x0 and variance σ2, then

〈X 〉 =
1

N

N∑
i=1

〈xi 〉 =
1

N
Nx0 = x0 (X is unbiased)

The variance of the estimator

Var(X ) =
〈
(X − 〈X 〉)2

〉
=
〈
X 2
〉
− 〈X 〉2 =

σ2

N
, since〈

X 2
〉

=
1

N2

N∑
i=1

N∑
j=1

〈xixj〉 , 〈xixj〉 =

{
0, i 6= j〈
x2
〉

= σ2 + x2
0 , i = j
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Estimator for variance

V =
1

N − 1

N∑
i=1

(xi − X )2

If x1, . . . , xN come from a normal distribution with a common mean

x0 and variance σ2, then
V (N − 1)

σ2
=

N∑
i=1

(xi − X )2

σ2
is distributed as

χ2 with N − 1 degrees of freedom:〈
V (N − 1)

σ2

〉
= N − 1, Var

(
V (N − 1)

σ2

)
= 2(N − 1), therefore

〈V 〉 = σ2 (V is unbiased), Var(V ) =
2σ4

N − 1

If x0 is known, then the unbiased estimator is
1

N

N∑
i=1

(xi − x0)2
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Mean-squared error

Mean-squared error MSE =
〈
(P − p)2

〉
b = 〈P〉 − p σ2 =

〈
P2
〉
− 〈P〉2

〈P〉 = b + p
〈
P2
〉

= σ2 + (b + p)2

MSE =
〈
P2
〉
−2 〈P〉 p+p2 = a2 +(b+p)2−2(b+p)p+p2 = σ2 +b2

MSE characterizes both bias and variance
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Mean-squared error: example

Consider a different estimator for variance: V ′ =
1

N

N∑
i=1

〈
(xi − X )2

〉
〈
V ′
〉

=
N − 1

N
〈V 〉 =

N − 1

N
σ2,

Var(V ′) =

(
N − 1

N

)2

Var(V ) =
2(N − 1)σ4

N2

V ′ is obviously biased: b =

(
N − 1

N
− 1

)
σ2 = −σ

2

N

However, this estimator has better MSE than V :

MSE(V ′) =
2(N − 1)σ4

N2
+
σ4

N2
=

(2N − 1)σ4

N2
, MSE(V ) =

2σ4

N − 1

MSE(V ′)

MSE(V )
=

(N − 1/2)(N − 1)

N2
< 1
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Efficient estimators

How one can figure out that an estimator is efficient (has the least
possible variance)?

Cramér-Rao bound: for any unbiased estimator P of parameter p that
depends on N independent measurements of a variable x distributed
according to the probability density function f (x , p),

Var(P) ≥ 1

N I (p)
,

where I (p) is Fisher information:

I (p) =

〈(
∂

∂p
ln f (x , p)

)2
〉

=

∫ (
∂

∂p
ln f (x , p)

)2

f (x , p) dx
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Robust estimators

An estimator P is robust for a given distribution if small deviations
from the distribution result in small changes of the estimator

Sensitivity curve: effect of adding a datapoint

SC (x ,N) =
P{x1, . . . , xN−1, x} − P{x1, . . . , xN−1}

1/N

Influence curve: IC (x) = lim
N→∞

SC (x ,N)

I example: mean PN{x1, . . . , xN} =
1

N

N∑
i=1

xi , lim
N→∞

PN = p

SC (x ,N) =
(N−1)PN−1+x

N − PN−1

1/N
= x − PN−1, IC (x) = x − p

An estimator is robust if its SC is a bounded function
I mean is not robust, median is

A. Khanov (PHYS6260, OSU) PHYS6260 9/20/23 9 / 13



Estimators for mean and variance: different variances

If x1, . . . , xN are unbiased measurements of the same unknown
quantity x with different variances σ2

1 . . . σ
2
N , then a commonly used

estimator is the weighted average:

X =

∑N
i=1 wixi∑N
i=1 wi

, where wi =
1

σ2
i

is unbiased (〈X 〉 = x) with variance

σ2
X =

1∑N
i=1 wi
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Resistance measurement: an example

Suppose we want to measure the value of a resistor.

We have three voltage supplies - 5 V, 10 V, and 20 V, and an
ammeter

The results of the measurements are 5.1 mA, 9.9 mA, 19.2 mA for
the voltage of 5 V, 10 V, 20 V, respectively

We assume the Ohm’s law I = V /R

R is the parameter of the theory we want to estimate
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Resistance measurement: solution 1

V [V] 5 10 20

I [mA] 5.1 9.9 19.2

R [kΩ] 0.98 1.01 1.04

We need to make some assumptions about the errors

Model 1: errors are unknown but scale with the measurement
In this case all measurements of R will have the same error:

R =
0.98 + 1.01 + 1.04

3
= 1.01 kΩ

∆R =

√
1

3− 1
(0.032 + 02 + 0.032) = 0.03 kΩ
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Resistance measurement: solution 2

Model 2: the current has a fixed measurement error 0.3 mA

V [V] 5 10 20

I [mA] 5.1 9.9 19.2

R [kΩ] 0.98 1.01 1.04

σ(R) [kΩ] 0.058 0.031 0.016

R =
0.98

0.0582 + 1.01
0.0312 + 1.04

0.0162

1
0.0582 + 1

0.0312 + 1
0.0162

= 1.032 kΩ

∆R =

√
1

1
0.0582 + 1

0.0312 + 1
0.0162

= 0.014 kΩ

why the result is shifted towards the last measurement?

why the error is much smaller – 〈σ〉 = 0.035 kΩ?
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