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Estimators

As a result of an experiment, we have data (measurements), which
are a set of N numbers x = (x1,...,xn)

We have a theory describing (we think) our data, which depends on a
number of parameters p = (p1,...,Pn)

We want to find the best estimates for the theory parameters and also
figure out if the theory is good or bad. For that, we construct a
function of measurements P(x) called an estimator

We want P to be consistent with p, meaning that as the number of
measurements N increases, the probability of P to be near the true
values of p approaches 1 (this is called “convergence in probability” ):

Ve >0: lim Prob(|P —p|<e)=1
N—o0

Since the measurements are subject to fluctuations (i.e. x; are
distributed according to their p.d.f.'s), so are the estimators
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Properties of estimators

@ Bias b: the difference between the expectation value of the estimator
and the true value of the parameter, b= (P) — p
> in general, we want an “unbiased” estimator for which b =0
> bias depends on the choice of parameters

* e.g. if Pis an unbiased estimator of p it doesn't mean that P’ = P? is
an unbiased estimator of p?

» if P is biased with bias b then P’ = P — b is unbiased
o Efficiency e: the ratio of the minimum possible variance of any
estimator to the variance of a given estimator, € = arznin/a2
> an estimator is called efficient if ¢ =1

> in many cases there is a trade-off between bias and efficiency — the

unbiased estimator may have very low efficiency, e.g. due to large
systematic uncertainties
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Estimator for mean

N
1
X = N E Xi
i=1
@ If x1,...,xy are unbiased measurements of the same unknown

quantity X with a common mean xg and variance o2, then

=5 Z x;) = Nxo =xo (X is unbiased)
@ The variance of the estimator )
Var(X) = ((X — )2> = <X2> —(X)? = OW, since
0,i #)
2\ _ )
(X?) = szlzl XiXj) 5 (Xixj) {<x2>:o—2+x§,i:j
i=1j
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Estimator for variance

1 N
e
i=1

@ If x1,...,xy come from a normal distribution With a common mean
] -1) Xj C
xo and variance o2, then Z (x is distributed as

x? with N — 1 degrees of freedom:
V(N -1 V(N -1
<(2)> =N-1, Var <(2)> = 2(N — 1), therefore
o o
204

(V) = ¢% (V is unbiased), Var(V) = N1

N
. . . .1
o If xo is known, then the unbiased estimator is N Z(x,- — x0)?
i=1
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Mean-squared error

@ Mean-squared error MSE = ((P — p)?)
b=(P)y—p o?=(P?) —(P)?
(Py=b+p (P?)=0%+(b+p)?
MSE = (P?) —2(P) p+p? = a®>+(b+p)>—2(b+p)p+p*> = 02+ b?

@ MSE characterizes both bias and variance
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Mean-squared error: example

N
1
o Consider a different estimator for variance: V' = N Z {(xi — X)2>
i=1

N—-1 N—-1

" o_ _ 2
N -1 2N — 1)
Var(V') = (T) Var(V) = -
_ 2
@ V'’ is obviously biased: b = <% — 1> o2 = _UW

@ However, this estimator has better MSE than V:
2(N—-1o* o+ (2N -1)o*

MSE(V") _ (N—-1/2)(N —1) <1
MSE(V) N2
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Efficient estimators

@ How one can figure out that an estimator is efficient (has the least
possible variance)?

@ Cramér-Rao bound: for any unbiased estimator P of parameter p that
depends on N independent measurements of a variable x distributed
according to the probability density function f(x, p),

1
Var(P) > ———,
P)= i)

where /(p) is Fisher information:

I(p) = <<§p|nf(x, p)>2> :/<aaplnf(x, p)>2f(x, p) dx
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Robust estimators

@ An estimator P is robust for a given distribution if small deviations
from the distribution result in small changes of the estimator

@ Sensitivity curve: effect of adding a datapoint

P{x1,...,xn—1,x} — P{x1,..., xn_1}
1/N

SC(x,N) =
@ Influence curve: IC(x) = lim SC(x, N)
N—oo
LN
» example: mean Py{xq,...,xny} = N Z;x,-,Nll_inO<> Py=p

(N*l)PN71+X _ P
N—1
SC(x,N) = N /N

=x—Py_1,IC(x)=x—p

@ An estimator is robust if its SC is a bounded function
» mean is not robust, median is
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Estimators for mean and variance: different variances

@ If xq,...,xy are unbiased measurements of the same unknown
quantity x with different variances o2 . . .0,2\,, then a commonly used
estimator is the weighted average:

ZN W X; 1
X = ==L where w; = —; is unbiased ({X) = x) with variance

Z,N:ll wi 9;
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Resistance measurement: an example

@ Suppose we want to measure the value of a resistor.

@ We have three voltage supplies - 5 V, 10 V, and 20 V, and an
ammeter

—E MWL
®

@ The results of the measurements are 5.1 mA, 9.9 mA, 19.2 mA for
the voltage of 5V, 10 V, 20 V, respectively

e We assume the Ohm's law | = V//R

@ R is the parameter of the theory we want to estimate
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Resistance measurement: solution 1

3
—II—\/VVV\l VIV [ 5 10 20

I[mA] | 51 99 19.2
@ R [kQ] | 0.98 1.01 1.04

@ We need to make some assumptions about the errors

Model 1: errors are unknown but scale with the measurement
In this case all measurements of R will have the same error:

R 0.98 + 1.?())1 +1.04 101 kO

AR = \/—(0032+02+0032)—003k9
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Resistance measurement: solution 2

Model 2: the current has a fixed measurement error 0.3 mA

V V] 5 10 20

I [mA] 51 99 192
R [kQ] 098 101 1.04
o(R) [kQ] [ 0.058 0.031 0.016

0.98 1.01 1.04
R = 00582 + 0. 0312 + 0. 0162 =1.032 kO

00582 + 0. 0312 + 0. 0162

1
AR:\/ : . — =0.014 kQ
0.0582 + 0.0312 + 0.0162

@ why the result is shifted towards the last measurement?
@ why the error is much smaller — (o) = 0.035 kQ?
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