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Formulation of the problem

@ Let variable y be a function of another variable x and parameters
p:pla"‘7pn:

y =f(x,p)
@ Suppose we have a set of N independent measurements of variable y:
Yy =Vyi,...,yn with known variances a%, .. .,0,2\, taken at N values of
X X=X1,y..., XN

@ Goal: construct an estimator for p
o Typical applications:

» Data fitting: have several measurements taken at different times, at
different positions etc.

» Overdetermined systems: problems where the number of unknowns
(parameters) is larger than the number of equations (measurements)
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Y2 sum

@ Construct a function

(this is not the estimator yet)

@ Find the minimum of this function w.r.t. p:

0 _

apr 0 (2)

(a system of n equations with n unknowns p)

@ The answer (which is a function of measurements y;) is an estimator
for parameters p

» the measurements y; do not have to be Gaussian distributed, but they
should be unbiased:

<yl> = f(Xia ptrue)
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Special case: linear dependence on parameters

@ In general the system of equations (2) is not easy to solve

@ Special case: f(x,p) is a linear function of parameters p:

> f(X,', p) = ijhj(x,), or f = Hp, where Hu = hj(X,')
j=1

» f doesn't have to be a linear function of x!

@ In this case (2) becomes a system of linear equations w.r.t. p

, N (yl' - Pjhj(Xf)>2
x°(p) = Z 2

p gs
i=1 !

Yi—>, 1PJh( X;)
aPk ()

x, hk Xi) y,hk
Zp, Z Z

j=1 i=1
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Correlated measurements

o If y; are correlated with the covariance matrix Vj; = cov(y;, y;), then

X =y -fR(y—f) (3)

where R = V1

o If y; are uncorrelated, R is diagonal:

/o2 0 ... 0
P 0 1/o3 ... 0
0 0 ... 1/0%

and we are back to formula (1)
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Correlated measurements (2)

8/8X1
@ Some linear algebra: if — = then for any constant
ox
0/0xn
vector v and matrix A:
2(vTx) =v —(x'v)=v 2(xTAx) = Ax+ ATx
ox ox ox

o Let's apply it to (3) where f = Hp:

x>=y"Ry—p"H Ry —y"RHp+p"H" RHp
x>

o = 0—H"Ry —(y"RH)T + (HTRH)p + (HTRH)"p=0

RT =R,so (HTRH)p=H'Ry, |p=(HTRH)"*HT Ry
@ One can show that the covariance matrix for the estimators
U; = cov(pi, p;) is calculated as U = (HTRH)™!
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Fit with a constant

@ There is only one parameter p and f(x) = p, so H =

e Eq. (1) reduces to

dx? Vo) &y
d_p:(’:"’:@z) 2

=1

which is exactly what we had for the estimator of the mean
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Fit with a straight line

e f(x) = po + p1x, linear w.r.t. parameters pg, p1

e Minimizing x2, we get a system of two equations:

N N N
W . DA i
2 2 2
i=1 o i=1 i i=1 i (4)
N 2 N
Y. SRy 5 = g
2 2 2
i—1 i i—1 i i—1 i

e Eq. (4) easily generalizes to an arbitrary polynomial fit

f(Xa p) =po+p1x+...+ pn—an_l

> note that it's still linear w.r.t. parameters
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Properties of least squared method

@ In general, the L.S. method is neither unbiased nor efficient
o If parameter dependence is linear then estimators produced by the
method are unbiased

@ If measurements are Gaussian distributed then the method is
asymptotically efficient (i.e. it is more and more efficient as the
number of measurements increases)

> in this case x? follows the x? distribution :)
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Example of least squares polynomial fit
@ Which fit should we use? Why?

T T T T T T T T T T
soE Y0 =P, +PX

E XINDF=54.34/13

T T T T T
B0E V(X =Py + PX+ DX B0E Y0 =Py + PX+ P+ P
70F. XiNDF =51.77/12 + 7oF. XiINDF =1091/11

S 4 gt . 5o+ttt : :2 T 3
1 I 5L B o
B E E E

T T T T T
g0 Y9 =P+ pX+p X+ +p i L+ px®
E XINDF=923/8

T T T T
g0E. Y0 =By + B+ B+ D+ p ot +
E XYNDF=9.41/9

T T T T
80E VX =P, + PX+ P+ P+ p Xt
E X/NDF=10.88/10
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sof- + sof- + sof- + +
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F-test

o Let n data points be fitted with two models, 1 and 2, where model 1
is “nested” within model 2

» model 1 has k; parameters, and model 2 has k, parameters, k; < k>
» for any choice of parameters in model 1, the same fit can be achieved
by some choice of parameters in model 2

@ By construction, model 2 gives a better fit than model 1
> the question is, does model 2 give significantly better fit than model 1

@ Calucalate the F statistic:

(x%*xﬁ)
ko —kq

F= X217
X2

(n—kg—l)

@ The null hypothesis (model 2 does not provide a significantly better
fit than model 1) is rejected if the F value calculated from the data is
greater than the critical value of the F-distribution (e.g.
corresponding to CL=95%)
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F-test results for our example

@ root will calculate the F probabilities for you

@ Transition from 3 to 4 appears to be significant

E L L d
3 4 5 6 7 8 9 10 11 12

probability that transition
k — 1 — k is not significant
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Bayesian Information Criterion

@ In general, need to add some term to x? to penalize increasing the
number of fit parameters k
@ Bayesian information criterion: pick the model with least x? + kIn n
» BIC is asymptotically efficient (if one of the models is correct, the

probability to pick it approaches 1 as n — o0)
» BIS does not requre the models to be nested

BIC

x BIC has a minimum at kK =4
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Effective variance

@ What to do if both x and y values have errors?
» we have a set of N independent measurements of variable y:

Yy = v1,...,yn with known variances 0}2,1, . ,0)2,,\, taken at N values of
X! X = x1,...,xy with known variances 02, ..., 02,

@ The usual approach is what is called “effective variance” method:
minimize

p) = Z 0.2 _f/ s p))))2 2 (5)

of

ax X=X;

@ note that this ruins the linearity of minimization equations, so it's
usually better to avoid it, or find the approximate minimum without x

uncertainties and then improve the result by taking 0)2(,- into account

where f'(x;,p) =
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Combining statistical and systematic uncertainties

@ Assume we have two measurements x; and xp of the same quantity x

x = x1 + Axy(stat.) £ Axi(syst.)
x = xp = Axp(stat.) + Axy(syst.)

Let's assume that systematic uncertainties are 100% correlated between the two
measurements

@ How to combine them?

>

vV vy vVYyy

we can assume that both measurements are constructed out of two
variables: x =r+s

r is randomly distributed with variance o, = (Ax(stat))?

s is randomly distributed with variance o5 = (Ax(syst))?

cov(ry, r) = cov(r,s1) = cov(r, s2) = cov(ra, s1) = cov(ra,sz) =0
cov(sy, ) = 02 = 0%, = 02
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Combining statistical and systematic uncertainties (2)

@ Determine covariance matrix of the measurements:
02 ={(n+s)?) —(n+s)* =03 +02
0)%2 = <(f2 + 52)2> — <r2 + 52>2 = 032 + ag
cov(x1,x2) = ((n + s1)(n + 82)) — (n +s1) (n + 8) = o2

@ The covariance matrix looks like follows:
2 2 2
V = 0r1 + Os Os
- 2 2 2
Os Or2 + Os
The rest can be done using the formula for correlated measurements with

56

@ This approach can be extended to any number of correlated /
uncorrelated uncertainties
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Binned data

@ In many cases we are measuring a random quantity, and we are
interested in its p.d.f.

@ Suppose we want to determine the mass and the width of the A™™
particle, how do we do it?

» reminder: AT is an unstable baryon with a mass of 1232 MeV
decaying into a proton and a "

@ Let’s consider two methods: mp scattering and invariant mass

measurement
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Measuring the parameters of A*": method 1

@ We have a 7" beam incident on a proton target

> we scan a range of 7 energies and count the number of scattering events as a
function of E (the energy of the 7p system in its center of mass)

> at each (fixed) beam energy, the number of scattering events n; is a random
(Poisson distributed) quantity with (n;) = o2

> if n; is large then Poisson can be approximated by a Gaussian with mean n; and
standard deviation /n;

> we assume that the points follow the Breit-Wigner formula

(r/27

O~ Ewr e

where M and I are the resonance mass and width, respectively

@ As the result of the experiment, we have a set of points y (the number of
scattering events with their uncertainties) at fixed values of x (C.M.S.
energy) which we can fit using the least squares method

> what is the number of parameters to be determined from the fit?
> is the parameter dependence linear?
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Total p* cross section (PDG summary)

Cross section [mb]

10 1 10 10? 10°
P [GeV/c]

http://pdg.1bl.gov/2013/hadronic-xsections/rpp2012-pipp_total.dat
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Measuring the parameters of A*": method 2

@ We are working in the STAR collaboration, studying the d+Au
collisions

» we are looking for proton-7™ pairs and calculate their invariant masses

» each proton-7™ pair measurement results in a number with an
uncertainty

@ How we can use these measurements to determine the A** mass and
width?

» we don't have “measured points” in the sense of the previous problem

» we have “density” of the points which we need to convert to the
number of events, so we can get an estimate on the density uncertainty

@ What is usually used in this case is called “binning”
» the result of the binning is a “histogram”
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Unbinned vs binned data

Entries

o N
S o

N
=]

TR T T [T T T T I I
o,
e

o
o
par S
e

16 Q1 115713 125 13 135 14 145 15 155 16
M(prt') [GeV] M(ptt) [GeV]

is there another resonance at 1.45 GeV?
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pr" invariant mass distribution (STAR)
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arXiv:0801.0450
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Optimal histogram binning

@ In general, there is no such thing as universally optimal bin size, it is
always problem dependent (are there any narrow peaks etc.)

@ Scott: optimal bin size h can be derived from minimizing the
integrated mean squared error of the histogram model

IMSE = /+Oo(fbinned(x) — f(x))2 dx

—00

» IMSE is asymptotically minimized by choosing
- 1/3
h= [6//v [ (f/(x))2dx]
» for normal distribution, h = 3.490/N1/3

e What if the probability density is far from normal (but still fairly
smooth)?
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Optimal histogram binning (2)

o(mean)

@ Freedman-Diaconis rule:
h = 2IQR/N/3, where IQR=Q3 — @
is interquartile range

» for normal distribution, IQR =1.35¢

o Example: N = 1000 standard normal
random points (h = 0.29) 107 107 : 0

Bin size

@ Bins do not have to be of equal width!
> a popular option is to define bins such that every bin has approximately

the same number of entries (> 5)
» a good rule of thumb for the number of such bins: 2/N?/°
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