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Formulation of the problem

Let variable y be a function of another variable x and parameters
p = p1, . . . , pn:

y = f (x ,p)

Suppose we have a set of N independent measurements of variable y :
y = y1, . . . , yN with known variances σ2

1, . . . , σ
2
N taken at N values of

x : x = x1, . . . , xN

Goal: construct an estimator for p

Typical applications:
I Data fitting: have several measurements taken at different times, at

different positions etc.
I Overdetermined systems: problems where the number of unknowns

(parameters) is larger than the number of equations (measurements)
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χ2 sum

Construct a function

χ2(p) =
N∑
i=1

(yi − f (xi ,p))2

σ2
i

(1)

(this is not the estimator yet)

Find the minimum of this function w.r.t. p:

∂χ2

∂pi
= 0 (2)

(a system of n equations with n unknowns p)

The answer (which is a function of measurements yi ) is an estimator
for parameters p

I the measurements yi do not have to be Gaussian distributed, but they
should be unbiased:

〈yi 〉 = f (xi ,ptrue)
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Special case: linear dependence on parameters

In general the system of equations (2) is not easy to solve

Special case: f (x ,p) is a linear function of parameters p:

I f (xi ,p) =
n∑

j=1

pjhj(xi ), or f = Hp, where Hij = hj(xi )

I f doesn’t have to be a linear function of x!

In this case (2) becomes a system of linear equations w.r.t. p

χ2(p) =
N∑
i=1

(
yi −

∑n
j=1 pjhj(xi )

)2

σ2
i

∂χ2

∂pk
= −2

N∑
i=1

yi −
∑n

j=1 pjhj(xi )

σ2
i

hk(xi ) = 0

n∑
j=1

pj

N∑
i=1

hj(xi )hk(xi )

σ2
i

=
N∑
i=1

yihk(xi )

σ2
i
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Correlated measurements

If yi are correlated with the covariance matrix Vij = cov(yi , yj), then

χ2 = (y − f)TR(y − f) (3)

where R = V−1

If yi are uncorrelated, R is diagonal:

R =


1/σ2

1 0 . . . 0
0 1/σ2

2 . . . 0
. . . . . . . . . . . .
0 0 . . . 1/σ2

N


and we are back to formula (1)
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Correlated measurements (2)

Some linear algebra: if
∂

∂x
=

 ∂/∂x1

. . .
∂/∂xn

 then for any constant

vector v and matrix A:

∂

∂x
(vTx) = v

∂

∂x
(xTv) = v

∂

∂x
(xTAx) = Ax + ATx

Let’s apply it to (3) where f = Hp:

χ2 = yTRy − pTHTRy − yTRHp + pTHTRHp

∂χ2

∂p
= 0− HTRy − (yTRH)T + (HTRH)p + (HTRH)Tp = 0

RT = R, so (HTRH)p = HTRy, p = (HTRH)−1HTRy

One can show that the covariance matrix for the estimators
Uij = cov(pi , pj) is calculated as U = (HTRH)−1
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Fit with a constant

There is only one parameter p and f (x) = p, so H =

 1
. . .
1


Eq. (1) reduces to

χ2 =
N∑
i=1

(yi − p)2

σ2
i

dχ2

dp
= 0 ⇒ p =

(
N∑
i=1

1

σ2
i

)−1 N∑
i=1

yi
σ2
i

σ2
p =

(
N∑
i=1

1

σ2
i

)−1

which is exactly what we had for the estimator of the mean
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Fit with a straight line

f (x) = p0 + p1x , linear w.r.t. parameters p0, p1

Minimizing χ2, we get a system of two equations:
p0

N∑
i=1

1

σ2
i

+ p1

N∑
i=1

xi
σ2
i

=
N∑
i=1

yi
σ2
i

p0

N∑
i=1

xi
σ2
i

+ p1

N∑
i=1

x2
i

σ2
i

=
N∑
i=1

xiyi
σ2
i

(4)

Eq. (4) easily generalizes to an arbitrary polynomial fit

f (x ,p) = p0 + p1x + . . .+ pn−1x
n−1

I note that it’s still linear w.r.t. parameters
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Properties of least squared method

In general, the L.S. method is neither unbiased nor efficient

If parameter dependence is linear then estimators produced by the
method are unbiased

If measurements are Gaussian distributed then the method is
asymptotically efficient (i.e. it is more and more efficient as the
number of measurements increases)

I in this case χ2 follows the χ2 distribution :)
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Example of least squares polynomial fit

Which fit should we use? Why?
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F-test

Let n data points be fitted with two models, 1 and 2, where model 1
is “nested” within model 2

I model 1 has k1 parameters, and model 2 has k2 parameters, k1 < k2

I for any choice of parameters in model 1, the same fit can be achieved
by some choice of parameters in model 2

By construction, model 2 gives a better fit than model 1
I the question is, does model 2 give significantly better fit than model 1

Calucalate the F statistic:

F =

(
χ2

1−χ2
2

k2−k1

)
(

χ2
2

n−k2−1

)
The null hypothesis (model 2 does not provide a significantly better
fit than model 1) is rejected if the F value calculated from the data is
greater than the critical value of the F -distribution (e.g.
corresponding to CL=95%)
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F-test results for our example

root will calculate the F probabilities for you

Transition from 3 to 4 appears to be significant
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Bayesian Information Criterion

In general, need to add some term to χ2 to penalize increasing the
number of fit parameters k

Bayesian information criterion: pick the model with least χ2 + k ln n
I BIC is asymptotically efficient (if one of the models is correct, the

probability to pick it approaches 1 as n→∞)
I BIS does not requre the models to be nested
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BIC has a minimum at k = 4
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Effective variance

What to do if both x and y values have errors?
I we have a set of N independent measurements of variable y :

y = y1, . . . , yN with known variances σ2
y1, . . . , σ

2
yN taken at N values of

x : x = x1, . . . , xN with known variances σ2
x1, . . . , σ

2
xN

The usual approach is what is called “effective variance” method:
minimize

χ2(p) =
N∑
i=1

(yi − f (xi ,p))2

σ2
yi + (f ′(xi ,p))2σ2

xi

(5)

where f ′(xi ,p) =
∂f

∂x

∣∣∣∣
x=xi

note that this ruins the linearity of minimization equations, so it’s
usually better to avoid it, or find the approximate minimum without x
uncertainties and then improve the result by taking σ2

xi into account
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Combining statistical and systematic uncertainties

Assume we have two measurements x1 and x2 of the same quantity x

x = x1 ±∆x1(stat.)±∆x1(syst.)
x = x2 ±∆x2(stat.)±∆x2(syst.)

Let’s assume that systematic uncertainties are 100% correlated between the two

measurements

How to combine them?
I we can assume that both measurements are constructed out of two

variables: x = r + s
I r is randomly distributed with variance σr = (∆x(stat))2

I s is randomly distributed with variance σs = (∆x(syst))2

I cov(r1, r2) = cov(r1, s1) = cov(r1, s2) = cov(r2, s1) = cov(r2, s2) = 0
I cov(s1, s2) = σ2

s1 = σ2
s2 = σ2

s
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Combining statistical and systematic uncertainties (2)

Determine covariance matrix of the measurements:

σ2
x1 =

〈
(r1 + s1)2

〉
− 〈r1 + s1〉2 = σ2

r1 + σ2
s

σ2
x2 =

〈
(r2 + s2)2

〉
− 〈r2 + s2〉2 = σ2

r2 + σ2
s

cov(x1, x2) = 〈(r1 + s1)(r2 + s2)〉 − 〈r1 + s1〉 〈r2 + s2〉 = σ2
s

The covariance matrix looks like follows:

V =

(
σ2
r1 + σ2

s σ2
s

σ2
s σ2

r2 + σ2
s

)
The rest can be done using the formula for correlated measurements with

H =

(
1
1

)
This approach can be extended to any number of correlated /
uncorrelated uncertainties
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Binned data

In many cases we are measuring a random quantity, and we are
interested in its p.d.f.

Suppose we want to determine the mass and the width of the ∆++

particle, how do we do it?
I reminder: ∆++ is an unstable baryon with a mass of 1232 MeV

decaying into a proton and a π+

Let’s consider two methods: πp scattering and invariant mass
measurement
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Measuring the parameters of ∆++: method 1

We have a π+ beam incident on a proton target
I we scan a range of π energies and count the number of scattering events as a

function of E (the energy of the πp system in its center of mass)
I at each (fixed) beam energy, the number of scattering events ni is a random

(Poisson distributed) quantity with 〈ni 〉 = σ2
i

I if ni is large then Poisson can be approximated by a Gaussian with mean ni and
standard deviation

√
ni

I we assume that the points follow the Breit-Wigner formula

f (E) ∼
(Γ/2)2

(E −M)2 + (Γ/2)2

where M and Γ are the resonance mass and width, respectively

As the result of the experiment, we have a set of points y (the number of
scattering events with their uncertainties) at fixed values of x (C.M.S.
energy) which we can fit using the least squares method

I what is the number of parameters to be determined from the fit?
I is the parameter dependence linear?
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Total pπ± cross section (PDG summary)
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http://pdg.lbl.gov/2013/hadronic-xsections/rpp2012-pipp_total.dat
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Measuring the parameters of ∆++: method 2

We are working in the STAR collaboration, studying the d+Au
collisions

I we are looking for proton-π+ pairs and calculate their invariant masses
I each proton-π+ pair measurement results in a number with an

uncertainty

How we can use these measurements to determine the ∆++ mass and
width?

I we don’t have “measured points” in the sense of the previous problem
I we have “density” of the points which we need to convert to the

number of events, so we can get an estimate on the density uncertainty

What is usually used in this case is called “binning”
I the result of the binning is a “histogram”
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Unbinned vs binned data
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is there another resonance at 1.45 GeV?
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pπ+ invariant mass distribution (STAR)

arXiv:0801.0450
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Optimal histogram binning

In general, there is no such thing as universally optimal bin size, it is
always problem dependent (are there any narrow peaks etc.)

Scott: optimal bin size h can be derived from minimizing the
integrated mean squared error of the histogram model

IMSE =

∫ +∞

−∞
(fbinned(x)− f (x))2 dx

I IMSE is asymptotically minimized by choosing

h =
[
6/N

∫ +∞
−∞ (f ′(x))2dx

]1/3

I for normal distribution, h = 3.49σ/N1/3

What if the probability density is far from normal (but still fairly
smooth)?
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Optimal histogram binning (2)

Freedman-Diaconis rule:
h = 2 IQR/N1/3, where IQR=Q3 − Q1

is interquartile range
I for normal distribution, IQR = 1.35σ

Example: N = 1000 standard normal
random points (h = 0.29)
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Bins do not have to be of equal width!
I a popular option is to define bins such that every bin has approximately

the same number of entries (≥ 5)
I a good rule of thumb for the number of such bins: 2N2/5
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