Statistical tests and hypothesis testing

Alexander Khanov

PHYS6260: Experimental Methods is HEP Oklahoma State University

September 29, 2023

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Statistics

Statistic (singular) t: any function defined on a set of data
 x = {x₁,...,x_N}.

Λ/

• Examples of statistics:

• sample mean
$$\langle x \rangle = \frac{1}{N} \sum_{i=1}^{N} x_i$$

- sample variance $\sigma^2 = \left\langle x^2 \right\rangle \left\langle x \right\rangle^2$
- likelihood $L(\mathbf{p}) = f(\mathbf{x}, \mathbf{p})$
- Since measurements **x** are random variables, *t* is also a random variable with its own p.d.f. *f*(*t*)

Hypothesis testing

- A typical problem: does the data reveal something interesting?
 - ► Null or background-only hypothesis h₀: not really (e.g. there is nothing but the Standard Model particles/processes)
 - Alternative or signal+background hypothesis h₁: indeed (e.g. there are some supersymetric particles flying around)
- Test statistic t: a statistic that can be used to test hypotheses
- Let f(t|h0) and f(t|h1) be the p.d.f. of statistic t under hypotheses h_0 and h_1 , respectively
- Introduce the t cut value, t_{cut} , to discriminate between the two hypotheses

Hypothesis testing (2)

• $\alpha = \int_{t_{\text{cut}}}^{\infty} f(t|h0) dt$ is the probability to accept h_0 while it is true

 $\blacktriangleright \ \alpha$ is called significance level of the test

- $\beta = \int_{-\infty}^{t_{\text{cut}}} f(t|h1) dt$ is the probability to reject h_1 while it is true
 - $1-\beta$ is called power of the test
- Neyman-Pearson lemma: the test that achieves the highest power for a given significance level is the likelihood ratio $t = \frac{L(\mathbf{x}|h_0)}{L(\mathbf{x}|h_1)}$
 - in practice it is more convenient to work with $\left(1 + \frac{L(\mathbf{x}|h_0)}{L(\mathbf{x}|h_1)}\right)^{-1}$ since it is restricted to (0, 1)

p-value

- If the value of test statistic t observed in data is $t_{\rm obs}$, then $P = \int_{t_{\rm obs}}^{\infty} f(t|h0) dt \quad \text{is called p-value}$
- p-value is not significance level (which is a predefined number unrelated to data)
- p-value is not the probability that h_0 is true
 - ▶ frequentist: p-value is calculated for a particular hypothesis (h₀), discussing the probability of h₀ being true doesn't make sense
 - ▶ bayesian: the probability for h_0 to be true for a given data set is $P(h_0|D)$ while p-value is $P(D|h_0)$ (roughly speaking)
- In general, low p-value doesn't tell anything about the null hypothesis
- The concept of p-value is hated by many people
 - Nature 506 (2014) 150: P values, the "gold standard" of statistical validity, are not as reliable as many scientists assume
 - Nature 519 (2015) 9: Psychology journal bans P values

▲ロト ▲圖 ト ▲ 画 ト ▲ 画 ト の Q @

Higgs p-value

Look-elsewhere effect in a nut shell

https://xkcd.com/882

(日) (周) (三) (三)

Look-elsewhere effect

- If one is performing multiple tests then a p-value of 1/n is likely to occur after *n* tests
- The local p-value: the probability for the background to fluctuate as much as the observed maximum excess
- The global p-value: the probability for the excess anywhere in the specific parameter range (e.g. mass range)
 - both are quoted e.g. for searches for new particles with unknown mass
- arXiv:2007.13821 [physics]: The look-elsewhere effect from a unified Bayesian and frequentist perspective

Bayes factor

- One alternative to p-value
- Consider two hypotheses h_0 and h_1 with prior probabilities $P(h_0)$ and $P(h_1) = 1 P(h_0)$
- According to Bayes formula,

$$\frac{P(h_1|D)}{P(h_0|D)} = \frac{P(D|h_1)P(h_1)}{P(D|h_0)P(h_0)}$$

• The Bayes factor $B_{10} = \frac{P(D|h_1)}{P(D|h_0)}$

Interpretation:

- $B_{10} = 1 3$: irrelevant
- $B_{10} = 3 20$: positive evidence
- $B_{10} = 20 150$: strong evidence
- $B_{10} > 150$: very strong evidence
- J. Am. Stat. Assoc. 90 (1995) 773

< 3 > < 3 >

Pearson's χ^2 statistic

- Suppose we have N measurements n = n₁,..., n_N which are Poisson distributed random variables, and N predicted values ν = ν₁,..., ν_N which depend on n parameters p = p₁,..., p_n
- Pearson's χ^2 statistic is defined as

$$\chi^2 = \sum_{i=1}^{N} \frac{(n_i - \nu_i)^2}{\nu_i}$$

- If n_i are large, Pearson's χ^2 statistic follows χ^2 p.d.f. $f(\chi^2, d)$, with d = N n degrees of freedom
- p-value for Pearson's χ^2 statistic:

$$\mathcal{P} = \int_{\chi^2_{obs}}^{\infty} f(\chi^2, d) \, d\chi^2$$

Confidence intervals

- If the parameter estimator P is believed to be Gaussian distributed, one can just quote its mean value $\langle P \rangle$ and the standard deviation $\Delta P = \sqrt{\sigma_P^2}$ as the result of the measurement
- Confidence interval: range of parameter values $p_{min} such that the probability that the true value of the parameter <math>p_{true}$ lies within the range is a predefined number α called confidence level

A. Khanov (PHYS6260, OSU)

Confidence intervals (2)

- What to do in the case when the parameter estimator distribution is not Gaussian, or there are physical boundaries on possible values of *p*?
- The procedure:
 - consider a test of the hypothesis that the parameter's true value is p
 - exclude all values of p where the hypothesis would be rejected at a significance level α (in other words, where the p-value is less than α)
 - \blacktriangleright the remaining values of p constitute the confidence interval at confidence level α
- Which test to use for this procedure?
 - a popular choice is the likelihood ratio
 - the confidence intervals obtained in this way are known as Feldman and Cousins