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Statistics

Statistic (singular) t: any function defined on a set of data
x = {x1, . . . , xN}.
Examples of statistics:

I sample mean 〈x〉 =
1

N

N∑
i=1

xi

I sample variance σ2 =
〈
x2
〉
− 〈x〉2

I likelihood L(p) = f (x,p)

Since measurements x are random variables, t is also a random
variable with its own p.d.f. f (t)
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Hypothesis testing

A typical problem: does the data reveal something interesting?
I Null or background-only hypothesis h0: not really (e.g. there is nothing

but the Standard Model particles/processes)
I Alternative or signal+background hypothesis h1: indeed (e.g. there are

some supersymetric particles flying around)

Test statistic t: a statistic that can be used to test hypotheses
Let f (t|h0) and f (t|h1) be the p.d.f. of statistic t under hypotheses
h0 and h1, respectively
Introduce the t cut value, tcut, to discriminate between the two
hypotheses
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Hypothesis testing (2)

α =

∫ ∞
tcut

f (t|h0) dt is the probability to accept h0 while it is true

I α is called significance level of the test

β =

∫ tcut

−∞
f (t|h1) dt is the probability to reject h1 while it is true

I 1− β is called power of the test

Neyman-Pearson lemma: the test that achieves the highest power for

a given significance level is the likelihood ratio t =
L(x|h0)

L(x|h1)

I in practice it is more convenient to work with

(
1 +

L(x|h0)

L(x|h1)

)−1

since

it is restricted to (0, 1)
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p-value

If the value of test statistic t observed in data is tobs, then

P =

∫ ∞
tobs

f (t|h0) dt is called p-value

p-value is not significance level (which is a predefined number
unrelated to data)

p-value is not the probability that h0 is true
I frequentist: p-value is calculated for a particular hypothesis (h0),

discussing the probability of h0 being true doesn’t make sense
I bayesian: the probability for h0 to be true for a given data set is

P(h0|D) while p-value is P(D|h0) (roughly speaking)

In general, low p-value doesn’t tell anything about the null hypothesis

The concept of p-value is hated by many people
I Nature 506 (2014) 150: P values, the “gold standard” of statistical

validity, are not as reliable as many scientists assume
I Nature 519 (2015) 9: Psychology journal bans P values
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https://www.nature.com/news/scientific-method-statistical-errors-1.14700
https://www.nature.com/news/psychology-journal-bans-p-values-1.17001


Higgs p-value
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Look-elsewhere effect in a nut shell

https://xkcd.com/882
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Look-elsewhere effect

If one is performing multiple tests then a p-value of 1/n is likely to
occur after n tests

The local p-value: the probability for the background to fluctuate as
much as the observed maximum excess

The global p-value: the probability for the excess anywhere in the
specific parameter range (e.g. mass range)

I both are quoted e.g. for searches for new particles with unknown mass

arXiv:2007.13821 [physics]: The look-elsewhere effect from a unified
Bayesian and frequentist perspective
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https://arxiv.org/pdf/2007.13821.pdf


Bayes factor

One alternative to p-value

Consider two hypotheses h0 and h1 with prior probabilities P(h0) and
P(h1) = 1− P(h0)

According to Bayes formula,

P(h1|D)

P(h0|D)
=

P(D|h1)P(h1)

P(D|h0)P(h0)

The Bayes factor B10 =
P(D|h1)

P(D|h0)

Interpretation:
I B10 = 1− 3: irrelevant
I B10 = 3− 20: positive evidence
I B10 = 20− 150: strong evidence
I B10 > 150: very strong evidence

J. Am. Stat. Assoc. 90 (1995) 773

A. Khanov (PHYS6260, OSU) PHYS6260 9/29/23 9 / 12



Pearson’s χ2 statistic

Suppose we have N measurements n = n1, . . . , nN which are Poisson
distributed random variables, and N predicted values ν = ν1, . . . , νN
which depend on n parameters p = p1, . . . , pn

Pearson’s χ2 statistic is defined as

χ2 =
N∑
i=1

(ni − νi )2

νi

If ni are large, Pearson’s χ2 statistic follows χ2 p.d.f. f (χ2, d), with
d = N − n degrees of freedom

p-value for Pearson’s χ2 statistic:

P =

∫ ∞
χ2
obs

f (χ2, d) dχ2
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Confidence intervals

If the parameter estimator P is believed to be Gaussian distributed,
one can just quote its mean value 〈P〉 and the standard deviation

∆P =
√
σ2P as the result of the measurement

Confidence interval: range of parameter values pmin < p < pmax such
that the probability that the true value of the parameter ptrue lies
within the range is a predefined number α called confidence level
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Confidence intervals (2)

What to do in the case when the parameter estimator distribution is
not Gaussian, or there are physical boundaries on possible values of p?

The procedure:
I consider a test of the hypothesis that the parameter’s true value is p
I exclude all values of p where the hypothesis would be rejected at a

significance level α (in other words, where the p-value is less than α)
I the remaining values of p constitute the confidence interval at

confidence level α

Which test to use for this procedure?
I a popular choice is the likelihood ratio
I the confidence intervals obtained in this way are known as Feldman and

Cousins
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