Statistical tests

Alexander Khanov

PHYS6260: Experimental Methods is HEP
Oklahoma State University

October 25, 2017
Statistics

- **Statistic (singular) S:** any function defined on a set of data $x = x_1, \ldots, x_N$. Examples:
 - sample mean $\langle x \rangle = \frac{1}{N} \sum_{i=1}^{N} x_i$
 - sample variance $\sigma^2 = \langle x^2 \rangle - \langle x \rangle^2$
 - likelihood $L = f(x, p)$
 - reminder: in the likelihood definition, we assume that variables x are described by a joint p.d.f. $f(x, p)$ which depends on n parameters $p = p_1, \ldots, p_n$
 - likelihood ratio $\lambda = \frac{f(x, p)}{f(x, P)}$
 - P are values of p which maximize $L(p)$
 - Since measurements x are random variables, S is also a random variable with its own p.d.f. $f(S)$
P-value

- Let S be constructed in a way that the larger S, the worse the data-to-model agreement.
- For a given set of data we have some observed value of the statistic S_{obs}.
- **p-value \mathcal{P}**: probability that $S > S_{obs}$ (i.e. S is found in a region where the data-to-model agreement is worse than observed).

\[
\mathcal{P} = \int_{S=S_{obs}}^{\infty} f(S) \, dS
\]

- The less the p-value, the smaller the probability that the hypothesis we are testing is valid.
- What we are usually testing is a null hypothesis (the assumption that there is no signal), with corresponding p-value \mathcal{P}_0.
 - if \mathcal{P}_0 is very small then most probably the signal is there.
Higgs p-value
Pearson’s χ^2 statistic

- Which statistic to use to calculate p-value?
- Suppose we have N measurements $n = n_1, \ldots, n_N$ which are Poisson distributed random variables, and N predicted values $\nu = \nu_1, \ldots, \nu_N$ which depend on n parameters $p = p_1, \ldots, p_n$
- Pearson’s χ^2 statistic is defined as

$$\chi^2 = \sum_{i=1}^{N} \frac{(n_i - \nu_i)^2}{\nu_i}$$

- If n_i are large, Pearson’s χ^2 statistic follows χ^2 p.d.f. $f(\chi^2, NDF)$, where $NDF = N - n$
- p-value for Pearson’s χ^2 statistic:

$$P = \int_{\chi^2_{obs}}^{\infty} f(\chi^2, NDF) \, d\chi^2$$
Reminder: χ^2 distribution

- This is the distribution of a sum of the squares of k independent standard normal random variables ($x_0 = 0, \sigma = 1$)

$$f(x, k) = \frac{1}{2^\frac{k}{2} \Gamma \left(\frac{k}{2} \right)} x^{k-1} e^{-\frac{x}{2}}$$

- If k variables x_i are distributed normally then $\sum_i \frac{(x_i - x_{0i})^2}{\sigma_i^2}$ is distributed as χ^2

- χ^2 distribution has mean value k and variance $2k$
Confidence intervals

- If the parameter estimator P is believed to be Gaussian distributed, one can just quote its mean value $\langle P \rangle$ and the standard deviation $\Delta P = \sqrt{\sigma_P^2}$ as the result of the measurement.
- **Confidence interval**: range of parameter values $p_{\text{min}} < p < p_{\text{max}}$ such that the probability that the true value of the parameter p_{true} lies within the range is a predefined number α called confidence level.
Confidence intervals (2)

- What to do in the case when the parameter estimator distribution is not Gaussian, or there are physical boundaries on possible values of p?

- The procedure:
 - consider a test of the hypothesis that the parameter’s true value is p
 - exclude all values of p where the hypothesis would be rejected at a significance level α (in other words, where the p-value is less than α)
 - the remaining values of p constitute the confidence interval at confidence level α

- Which test to use for this procedure?
 - a popular choice is the likelihood ratio
 - the confidence intervals obtained in this way are known as Feldman and Cousins