Particles

Alexander Khanov

PHYS6260: Experimental Methods is HEP
Oklahoma State University

August 23, 2017
Particles

- High Energy Physics = Particle Physics
- HEP addresses fundamental questions, just to name a few:
 - what is the origin of mass?
 - what is dark matter and dark energy?
 - why there is an imbalance of matter and antimatter in the Universe?
 - hierarchy problem (why gravity is so weak)?
 - where are magnetic monopoles?
 - is the proton stable?
- The way it tries to solve these problems is by looking at fundamental particles and their interactions
 - “fundamental” = can’t be made by a combination of other particles
Particles and fields

- We can’t look at particles directly – they are “too small”
 - we study properties of particles through their interactions which are carried out by fields

- There is no real boundary between particles and fields:
 - particles are localized in space and fields exist everywhere – but this distinction is moot because of uncertainty principle
 - particles exhibit wave properties, and fields are quantized

- Most of the particles we are interested in are extremely short-lived and quickly convert to other particles
 - these conversions are also carried out by interactions
Standard Model

- A little “periodic table” that includes all known fundamental particles and carriers of all fundamental interactions
 - gravity is not included (and we have no clue about it)

- e, μ, τ, ν are leptons, u, d, c, s, b, t are quarks
- leptons and quarks are fermions, field carriers are bosons
- ν, Z, γ do not have a charge, e, μ, τ have “integer” charge, and quarks have “fractional” charge
- γ, g, and ν (in SM!) don’t have a mass
Baryons and mesons

- In addition to fundamental particles, there are many composite particles
 - “If I could remember the names of all these particles, I’d be a botanist” (E. Fermi)
- Baryons: made of three quarks

- Proton
- Δ++
- Λ
- Neutron
- Σ+
- Ξ
Baryons and mesons

- In addition to fundamental particles, there are many composite particles
 - “If I could remember the names of all these particles, I’d be a botanist” (E. Fermi)
- Mesons: made of a quark and an antiquark
 - pion
 - D-meson
 - J/ψ
 - kaon
 - B-meson
 - Υ

A. Khanov (PHYS6260, OSU)
Most common particles

- To explain most of matter around us, we just need electrons, protons, and neutrons.
Stable and unstable particles

- There are very few particles which have infinite (or at least very large) lifetime
 - photon – the one we can detect by naked eye
 - protons and electrons (is the proton really stable?)
 - neutrinos (but they oscillate)
 - gluons / light quarks – but they can’t be observed directly
- neutron is not stable but its time is macroscopic (15 minutes)
 - it’s for a “free” neutron, those inside the nucleus keep turning into protons and vice versa
- muons: 2.2 μs, charged pions: 26 ns (π^0 is only 8.4×10^{-17} s)
 - doesn’t look much but think of the path it may travel:
 $c = 3 \times 10^8$ m/s, 1 ns means 30 cm
- most particles (including W/Z and Higgs) decay so fast there is no way to “catch” them
How unstable is unstable?

- To address this question, need to compare particle’s lifetime to its mass
 - mass is energy: \(E = mc^2 \)
 - energy is time: \(\Delta E \Delta t \geq \hbar/2 \)
 - 1 GeV corresponds to \(3 \times 10^{-25} \) s

- measurement of lifetime is intrinsically uncertain
 - having done it many times, we will get a bell-shaped distribution (strictly speaking, a Breit-Wigner one: \(\sim \Gamma/((E - E_0)^2 + (\Gamma/2)^2) \))

- At some point, the “particle” is no longer a particle!
Other particles

- So far we are not aware of any other particles which might be there.
- But there are many reasons to believe that more particles exist:
 - Composite particles which are not baryons/mesons (e.g. glueballs)
 - Supersymmetric particles
 - More SM generations
 - More Higgs particles
 - Monopoles, gravitons, axions, KK excitations
 - ?