
Random numbers and Monte Carlo techniques

Alexander Khanov

PHYS6260: Experimental Methods is HEP
Oklahoma State University

October 11, 2023



Random numbers

What is a random number?
I Is 3 a random number?

Random numbers always come
in sequences

Why do we need random
numbers?

I to calculate integrals!

A. Khanov (PHYS6260, OSU) PHYS6260 10/11/23 2 / 17



What is a good random number?

Random numbers are “uniform”
I uniformity: numbers are equally probable everywhere

Random numbers are “unpredictable”
I independence: current value is not related to previous values

Random numbers are not like this:

A. Khanov (PHYS6260, OSU) PHYS6260 10/11/23 3 / 17



Random number tests

Making sure that random numbers are random is a big deal
https://csrc.nist.gov/projects/random-bit-generation/

documentation-and-software/guide-to-the-statistical-tests

We can’t define what a random sequence is, only what it isn’t

General approach: calculate some properties of the random sequence
(number of 1’s and 0’s, length of groups consisting of 1’s, etc),
compare with prediction for a “true” random sequence

Procedure:
I null hypothesis: the sequence is random
I carry out the testing procedure
I calculate the P-value
I the sequence is declared random (null hypothesis is successful) if
P ≥ α, where α is a predefined value (e.g. 0.01 for 99% C.L.)

Popular tests: χ2, Kolmogorov-Smirnov

A. Khanov (PHYS6260, OSU) PHYS6260 10/11/23 4 / 17

 https://csrc.nist.gov/projects/random-bit-generation/documentation-and-software/guide-to-the-statistical-tests
 https://csrc.nist.gov/projects/random-bit-generation/documentation-and-software/guide-to-the-statistical-tests


Random number tests (2)

χ2 test
I suppose we have n possible categories of observations, in each category

i we expect ei occurrences and observe oi occurrences, then

χ2 =
n∑

i=1

(oi − ei )
2

ei

is distributed as χ2 with n − 1 degrees of freedom
I χ2 should be less than certain value

Kolmogorov-Smirnov test
I suppose F (x) is cumulative distribution function (c.d.f.)

F (x) =

∫ x

−∞
f (x) dx where f (x) is probability density function (pdf)

I compare observed and expected cdf (usually in bins of x)
I calculate maximum deviations

K+ =
√
nmax

x
(Fo(x)− Fe(x)) K− =

√
nmax

x
(Fe(x)− Fo(x))

I K+, K− should be less than certain value

A. Khanov (PHYS6260, OSU) PHYS6260 10/11/23 5 / 17



Methods to generate random numbers

Hardware random number generators
I radioactivity, cosmic rays, thermal noise

/dev/random
I “entropy harvesting”: collect environmental noise from LAN traffic,

serial line traffic, HW and SW interrupts etc.

Pseudo random generators

A. Khanov (PHYS6260, OSU) PHYS6260 10/11/23 6 / 17



Pseudo random generators

Linear congruential generators LCG(m, a, c , x0)

xi+1 = (axi + c) mod m

If (and only if)
I c is relatively prime to m,
I a− 1 is a multiple of p, for every

prime p dividing m, and
I a− 1 is a multiple of 4, if p is a

multiple of 4,

then LCG has a period of m

LCG may or may not be good
I infamous example: IBM generator

RANDU, LCG(231,65539,0,1)

A. Khanov (PHYS6260, OSU) PHYS6260 10/11/23 7 / 17



Mersenne Twister

State-of-the-art in random number generation (since 1997)
I ROOT: TRandom3

Very fast and short (but not very easy to understand)

Period is a Mersenne number (a prime number of the form 2m − 1;
for the popular implementation, m = 19937)

Can be improved (cf SFMT)

A. Khanov (PHYS6260, OSU) PHYS6260 10/11/23 8 / 17



Integer and floating point random numbers

Random number generators produce sequences of integers ri ,
0 ≤ ri < MAX

We are usually interested in real random numbers that follow some
distribution

Integer to uniform: pick MAX = 2p, p=precision (e.g. 32), then
qi = ri/MAX is uniform on (0,1) (and a + (b − a)qi is uniform on
(a, b)

A. Khanov (PHYS6260, OSU) PHYS6260 10/11/23 9 / 17



Generating distributions (1)

Gaussian distribution: Box-Muller transform
I if u1, u2 are independent random variables uniform on (0,1), then√
−2 ln x1 cos(2πx2),

√
−2 ln x1 sin(2πx2) are independent random

variables with normal distribution (x0 = 0, σ = 1)

Gaussian distribution, multivariate case with covariance matrix V :
I generate n independent Gaussian variables g with mean 0 and variance

1 as above
I x = 〈x〉+ Lg where L is the (unique) lower triangular matrix that

satisfies V = LLT , it can be found using Cholesky’s decomposition

A. Khanov (PHYS6260, OSU) PHYS6260 10/11/23 10 / 17



Generating distributions (2)

Poisson distribution with mean λ: Knuth’s algorithm
I count the number of times you multiply uniform random numbers until

the product becomes less than e−λ

int poissonRandomNumber(int lambda) {

double L = Math.exp(-lambda);

int k = 0;

double p = 1;

do {

k = k + 1;

double u = Math.random();

p = p * u;

} while (p > L);

return k - 1;

}

if λ is large, the algorithm takes too long to complete
I Gaussian is a good approximation

A. Khanov (PHYS6260, OSU) PHYS6260 10/11/23 11 / 17



Generating distributions (3)

Isotropic direction in 3d:
I “isotropic” = density proportional to solid angle

dΩ = dϕ sinθ dθ = −dϕ d(cos θ)
I cos θ is uniform on (-1,1) and ϕ is uniform on (0,2π)

. . . etc.

What to do for an arbitrary distribution?

A. Khanov (PHYS6260, OSU) PHYS6260 10/11/23 12 / 17



Acceptance-rejection

The algorithm:
I encapsulate the p.d.f. f (x) in a box a < x < b, 0 < f (x) < fmax

I generate a random number x uniform on (a, b)
I generate a random number y uniform on (0, fmax)
I accept x as result if y < f (x)

Can be easily implemented for binned p.d.f.

Problems:
I doesn’t work for −∞ < x < +∞
I inefficient for pole-like functions

Possible improvements: split the x range in subranges, each with its
own fmax (“adaptive rejection”) – improves efficiency

A. Khanov (PHYS6260, OSU) PHYS6260 10/11/23 13 / 17



Inverse transform

Based on the fact that c.d.f. F (x) ==
∫ x
a f (x)dx is by itself a

random variable uniform on (0,1)

The algorithm:
I generate a random number y uniform on (0,1)

I solve for x the equation

∫ x

a
f (x)dx∫ b

a
f (x)dx

= y

Handy if it’s easy to find F−1(y)

Can be easily implemented for binned c.d.f.

A. Khanov (PHYS6260, OSU) PHYS6260 10/11/23 14 / 17



Weights

What if acception-rejection is impractical and inverting the integral is
too much work?

We can do weighted Monte Carlo

The algorithm:
I approximate the “bad” function f (x) with a “good” function f ∗(x)
I generate a random number x with p.d.f. f ∗(x)

I assign weight w =
f (x)

f ∗(x)
∼ 1

I two options: do acceptance-rejection based on w/wmax (less efficient)
or count “events” taking the weights into account

A. Khanov (PHYS6260, OSU) PHYS6260 10/11/23 15 / 17



Multidimensional case

It helps if the variables are separable (and therefore uncorrelated):
f (x1, . . . , xn) =

∏n
i=1 fi (xi )

Otherwise, distribution along each dimension has to be calculated

There are special methods to do it efficiently

A. Khanov (PHYS6260, OSU) PHYS6260 10/11/23 16 / 17



Metropolis-Hastings algorithm

This is an example of Markov Chain Monte Carlo

It doesn’t require p.d.f. f (x) to be normalized to 1 – it will work with any
function proportional to p.d.f.

The algorithm:
I pick a “proposal p.d.f.” q(x ′, x) which gives the probability for the next candidate

x ′ provided the current sample value is x . q(x ′, x) can be arbitrary (provided
q(x ′, x) = q(x , x ′)), the usual choice is a (multivariate) Gaussian centered at x

I pick a starting point x0 (again, it can be arbitrary)
I at each step, given current state x , generate next candidate state x ′ according to

q(x ′, x)
I calculate the “acceptance ratio” α = f (x ′)/f (x)
I if α > 1 then the new state is more probable than the old one – accept it (i.e.

assign x ′ to x)
I otherwise, generate a random number u uniform on (0,1) and accept the new state

if α > u
I otherwise, repeat with the old state x

The Metropolis-Hastings algorithm is very close to simulated annealing – a
minimization heuristic

I Both methods work very well in highly multidimensional cases

A. Khanov (PHYS6260, OSU) PHYS6260 10/11/23 17 / 17


