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Track finding/fitting

We want to find and fit a particle trajectory measured at N planes

A straightforward approach: global least squares fit
I try all combinations of points (one point per plane)
I combine them in a least square estimator
I pick the combination with least χ2

I exclude found points, repeat

This approach is difficult for several reasons:
I there are too many combinations – want to add one plane at a time
I if there are n measurements, calculation of χ2 implies inversion of an

n × n covariance matrix – very computationally intensive
I as the particle propagates from plane to plane, it undergoes multiple

scattering – how to take it into account?
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Kalman filter

Kalman filter is a recursive least squares estimator, mathematically
equivalent to global least squares fit

I the computation time is proportional to the number of measuring planes and
depends very little on the number of measurements per detector

I due to recursive nature, it is well suited for combined track finding and fitting

A particle trajectory is described by the state vector x and its covariance
matrix of errors C

I the typical choice of the state vector is q/pT, θ, φ, xT, yT

The model consists of particle propagation and measurement
I as the particle propagates from plane k − 1 to plane k, the state vector changes as

xk = Fk−1xk−1 + wk−1, where w is propagation noise (due to multiple scattering)
with mean 〈w〉 = 0 and covariance matrix cov(w) = Q

I at each plane k, we measure the position of the particle m that is related to the
state vector as mk = Hkxk + εk , where ε is measurement noise (detector
measurement error) with mean 〈ε〉 = 0 and covariance matrix cov(ε) = V

In general, the model doesn’t have to be linear, then
xk = fk−1(xk−1) + wk−1, mk = hk(xk) + εk , and fk , hk must be expanded
into Taylor series
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The algorithm description

The method begins with approximate values of the state vector components
and “large” covariance matrix

I theoretically the initial state vector can be arbitrary, but in practice it’s better to
pick some “good” initial approximation to make the procedure more stable

The procedure consists of alternating two types of steps: prediction
(extrapolation of the state vector from plane to plane), and filtering (update
of the state vector in accordance with measurements at a given plane)

Prediction
I extrapolation of the state vector from plane k − 1 to plane k: xk−1

k = Fk−1xk−1

I extrapolation of the covariance matrix: C k−1
k = Fk−1Ck−1F

T
k−1 + Qk−1

I residuals of predictions: rk−1
k = mk − Hkx

k−1
k

I convariance matrix of predictions: Rk−1
k = Vk + HkC

k−1
k HT

k

Filtering (weighted means formalism):

I update of the state vector: xk = Ck

[
(C k−1

k )−1xk−1
k + HT

k V−1
k mk

]
I update of the covariance matrix: Ck =

[
(C k−1

k )−1 + HT
k V−1

k Hk

]−1

I χ2 update: χ2
k = χ2

k−1 + rTk V−1
k rk + (xk − xk−1

k )T (C k−1
k )−1(xk − xk−1

k )
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Properties of the algorithm

An additional step (“smoothing” or back propagation) allows one to
evaluate the state vector at all previous planes taking into account all
measurements

Since χ2 is evaluated at each step, it is easy to compare the
candidates and pick (a few) best continuation(s) and detect outliers

The method can be also used to fit vertex positions and separate
secondary vertices from primary ones

Generalizations:
I deterministic annealing filter
I Gaussian-sum filter

Credits:
I R. E. Kalman, J. Basic Eng. Mar 1960, 82(1) 35
I P. Billoir, Nucl. Instr. and Meth. 225 (1984) 352: proposed the

method for track finding without recognizing it as Kalman filter
I R. Frühwirth, Nucl. Instr. and Meth. A262 (1987) 444: all you need to

know about track and vertex fitting with Kalman filtering
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Histogramming

When we are searching for new resonances, we are looking for signal
peaks over flat background
Sometimes the information about objects is spread out over the data,
like in a hologram
Can we bring it together to form a peak?
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Histogramming

When we are searching for new resonances, we are looking for signal
peaks over flat background
Sometimes the information about objects is spread out over the data,
like in a hologram
Can we bring it together to form a peak?
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Hough transform

Trajectories originated from (0,0) can be described as
ρr = 2 sin(φ− φ0), where φ0 is the trajectory slope at r = 0, and ρ is
the curvature (signed inverse radius)

This can be thought as a transformation from (x , y) space to (φ0, ρ)
space

I in (x , y) space, each trajectory is a line, and measurements are points
I in (φ0, ρ) space, each trajectory is a point, and measurements are lines
I lines from measurements of the same trajectory intersect at the same

point which is the (φ0, ρ) parameters of this trajectory
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Wavelets

What is wavelet?
I it’s kind of Fourier transform, but instead of sine/cosine basis it uses special kind of

functions called wavelets: Xa,b =

∫ +∞

−∞
x(t)ψa,b(t) dt (a=scale, b=translation)

Regular Fourier transform doesn’t catch local bursts in frequency (basically,
it gets spikes in frequency but it doesn’t know where they happen)

I wavelets try to take care of that

There are many various types of wavelets
I for my example, I picked Daubechies 4-tap wavelets
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Wavelets: strong signal

Original signal: 1+2×Gaus(0.3,0.02)

Filter: Daubechies-4 wavelets
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Wavelets: weak signal

Original signal: 1+0.2×Gaus(0.3,0.02)

Filter: Daubechies-4 wavelets
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