Noise filtering

Alexander Khanov
PHYS6260: Experimental Methods is HEP Oklahoma State University

October 30, 2023

Track finding/fitting

- We want to find and fit a particle trajectory measured at N planes
- A straightforward approach: global least squares fit
- try all combinations of points (one point per plane)
- combine them in a least square estimator
- pick the combination with least χ^{2}
- exclude found points, repeat
- This approach is difficult for several reasons:
- there are too many combinations - want to add one plane at a time
- if there are n measurements, calculation of χ^{2} implies inversion of an $n \times n$ covariance matrix - very computationally intensive
- as the particle propagates from plane to plane, it undergoes multiple scattering - how to take it into account?

Kalman filter

- Kalman filter is a recursive least squares estimator, mathematically equivalent to global least squares fit
- the computation time is proportional to the number of measuring planes and depends very little on the number of measurements per detector
- due to recursive nature, it is well suited for combined track finding and fitting
- A particle trajectory is described by the state vector \mathbf{x} and its covariance matrix of errors C
- the typical choice of the state vector is $q / p_{\mathrm{T}}, \theta, \phi, x_{\mathrm{T}}, y_{\mathrm{T}}$
- The model consists of particle propagation and measurement
- as the particle propagates from plane $k-1$ to plane k, the state vector changes as $\mathbf{x}_{k}=F_{k-1} \mathbf{x}_{k-1}+\mathbf{w}_{k-1}$, where \mathbf{w} is propagation noise (due to multiple scattering) with mean $\langle\mathbf{w}\rangle=0$ and covariance matrix $\operatorname{cov}(\mathbf{w})=Q$
- at each plane k, we measure the position of the particle \boldsymbol{m} that is related to the state vector as $\mathbf{m}_{k}=H_{k} \mathbf{x}_{k}+\epsilon_{k}$, where ϵ is measurement noise (detector measurement error) with mean $\langle\epsilon\rangle=0$ and covariance matrix $\operatorname{cov}(\epsilon)=V$
- In general, the model doesn't have to be linear, then $\mathbf{x}_{k}=f_{k-1}\left(\mathbf{x}_{k-1}\right)+\mathbf{w}_{k-1}, \mathbf{m}_{k}=h_{k}\left(\mathbf{x}_{k}\right)+\epsilon_{k}$, and f_{k}, h_{k} must be expanded into Taylor series

The algorithm description

- The method begins with approximate values of the state vector components and "large" covariance matrix
- theoretically the initial state vector can be arbitrary, but in practice it's better to pick some "good" initial approximation to make the procedure more stable
- The procedure consists of alternating two types of steps: prediction (extrapolation of the state vector from plane to plane), and filtering (update of the state vector in accordance with measurements at a given plane)
- Prediction
- extrapolation of the state vector from plane $k-1$ to plane $k: \mathbf{x}_{k}^{k-1}=F_{k-1} \mathbf{x}_{k-1}$
- extrapolation of the covariance matrix: $C_{k}^{k-1}=F_{k-1} C_{k-1} F_{k-1}^{T}+Q_{k-1}$
- residuals of predictions: $\mathbf{r}_{k}^{k-1}=\mathbf{m}_{k}-H_{k} \mathbf{x}_{k}^{k-1}$
- convariance matrix of predictions: $R_{k}^{k-1}=V_{k}+H_{k} C_{k}^{k-1} H_{k}^{T}$
- Filtering (weighted means formalism):
- update of the state vector: $\mathbf{x}_{k}=C_{k}\left[\left(C_{k}^{k-1}\right)^{-1} \mathbf{x}_{k}^{k-1}+H_{k}^{T} V_{k}^{-1} \mathbf{m}_{k}\right]$
- update of the covariance matrix: $C_{k}=\left[\left(C_{k}^{k-1}\right)^{-1}+H_{k}^{T} V_{k}^{-1} H_{k}\right]^{-1}$
- χ^{2} update: $\chi_{k}^{2}=\chi_{k-1}^{2}+\mathbf{r}_{k}^{T} V_{k}^{-1} \mathbf{r}_{k}+\left(\mathbf{x}_{k}-\mathbf{x}_{k}^{k-1}\right)^{T}\left(C_{k}^{k-1}\right)^{-1}\left(\mathbf{x}_{k}-\mathbf{x}_{k}^{k-1}\right)$

Properties of the algorithm

- An additional step ("smoothing" or back propagation) allows one to evaluate the state vector at all previous planes taking into account all measurements
- Since χ^{2} is evaluated at each step, it is easy to compare the candidates and pick (a few) best continuation(s) and detect outliers
- The method can be also used to fit vertex positions and separate secondary vertices from primary ones
- Generalizations:
- deterministic annealing filter
- Gaussian-sum filter
- Credits:
- R. E. Kalman, J. Basic Eng. Mar 1960, 82(1) 35
- P. Billoir, Nucl. Instr. and Meth. 225 (1984) 352: proposed the method for track finding without recognizing it as Kalman filter
- R. Frühwirth, Nucl. Instr. and Meth. A262 (1987) 444: all you need to know about track and vertex fitting with Kalman filtering

Histogramming

- When we are searching for new resonances, we are looking for signal peaks over flat background
- Sometimes the information about objects is spread out over the data, like in a hologram
- Can we bring it together to form a peak?

where are the arcs?

Histogramming

- When we are searching for new resonances, we are looking for signal peaks over flat background
- Sometimes the information about objects is spread out over the data, like in a hologram
- Can we bring it together to form a peak?

easy to see if there were no noise

Hough transform

- Trajectories originated from $(0,0)$ can be described as $\rho r=2 \sin \left(\phi-\phi_{0}\right)$, where ϕ_{0} is the trajectory slope at $r=0$, and ρ is the curvature (signed inverse radius)
- This can be thought as a transformation from (x, y) space to $\left(\phi_{0}, \rho\right)$ space
- in (x, y) space, each trajectory is a line, and measurements are points
- in $\left(\phi_{0}, \rho\right)$ space, each trajectory is a point, and measurements are lines
- lines from measurements of the same trajectory intersect at the same point which is the (ϕ_{0}, ρ) parameters of this trajectory

Hough transform

- Trajectories originated from $(0,0)$ can be described as $\rho r=2 \sin \left(\phi-\phi_{0}\right)$, where ϕ_{0} is the trajectory slope at $r=0$, and ρ is the curvature (signed inverse radius)
- This can be thought as a transformation from (x, y) space to $\left(\phi_{0}, \rho\right)$ space
- in (x, y) space, each trajectory is a line, and measurements are points
- in $\left(\phi_{0}, \rho\right)$ space, each trajectory is a point, and measurements are lines
- lines from measurements of the same trajectory intersect at the same point which is the (ϕ_{0}, ρ) parameters of this trajectory

Wavelets

- What is wavelet?
- it's kind of Fourier transform, but instead of sine/cosine basis it uses special kind of functions called wavelets: $X_{a, b}=\int_{-\infty}^{+\infty} x(t) \psi_{a, b}(t) d t$ ($a=$ scale, $b=$ translation)
- Regular Fourier transform doesn't catch local bursts in frequency (basically, it gets spikes in frequency but it doesn't know where they happen)
- wavelets try to take care of that
- There are many various types of wavelets
- for my example, I picked Daubechies 4-tap wavelets

Wavelets: strong signal

- Original signal: $1+2 \times \operatorname{Gaus}(0.3,0.02)$
- Filter: Daubechies-4 wavelets

Wavelets: weak signal

- Original signal: $1+0.2 \times \operatorname{Gaus}(0.3,0.02)$
- Filter: Daubechies-4 wavelets

