Noise filtering

Alexander Khanov

PHYS6260: Experimental Methods is HEP Oklahoma State University

October 30, 2023

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

Track finding/fitting

- We want to find and fit a particle trajectory measured at N planes
- A straightforward approach: global least squares fit
 - try all combinations of points (one point per plane)
 - combine them in a least square estimator
 - pick the combination with least χ^2
 - exclude found points, repeat
- This approach is difficult for several reasons:
 - there are too many combinations want to add one plane at a time
 - ▶ if there are *n* measurements, calculation of *χ*² implies inversion of an *n* × *n* covariance matrix very computationally intensive
 - as the particle propagates from plane to plane, it undergoes multiple scattering – how to take it into account?

Kalman filter

- Kalman filter is a recursive least squares estimator, mathematically equivalent to global least squares fit
 - the computation time is proportional to the number of measuring planes and depends very little on the number of measurements per detector
 - due to recursive nature, it is well suited for combined track finding and fitting
- A particle trajectory is described by the state vector **x** and its covariance matrix of errors *C*
 - the typical choice of the state vector is $q/p_{\rm T}$, θ , ϕ , $x_{\rm T}$, $y_{\rm T}$
- The model consists of particle propagation and measurement
 - ▶ as the particle propagates from plane k 1 to plane k, the state vector changes as $\mathbf{x}_k = F_{k-1}\mathbf{x}_{k-1} + \mathbf{w}_{k-1}$, where \mathbf{w} is propagation noise (due to multiple scattering) with mean $\langle \mathbf{w} \rangle = 0$ and covariance matrix $cov(\mathbf{w}) = Q$
 - at each plane k, we measure the position of the particle m that is related to the state vector as m_k = H_kx_k + ε_k, where ε is measurement noise (detector measurement error) with mean (ε) = 0 and covariance matrix cov(ε) = V
- In general, the model doesn't have to be linear, then
 x_k = f_{k-1}(x_{k-1}) + w_{k-1}, m_k = h_k(x_k) + ε_k, and f_k, h_k must be expanded into Taylor series

The algorithm description

- The method begins with approximate values of the state vector components and "large" covariance matrix
 - theoretically the initial state vector can be arbitrary, but in practice it's better to pick some "good" initial approximation to make the procedure more stable
- The procedure consists of alternating two types of steps: prediction (extrapolation of the state vector from plane to plane), and filtering (update of the state vector in accordance with measurements at a given plane)
- Prediction
 - extrapolation of the state vector from plane k 1 to plane k: $\mathbf{x}_k^{k-1} = F_{k-1}\mathbf{x}_{k-1}$
 - extrapolation of the covariance matrix: $C_k^{k-1} = F_{k-1}C_{k-1}F_{k-1}^T + Q_{k-1}$
 - residuals of predictions: $\mathbf{r}_k^{k-1} = \mathbf{m}_k H_k \mathbf{x}_k^{k-1}$
 - convariance matrix of predictions: $R_k^{k-1} = V_k + H_k C_k^{k-1} H_k^T$
- Filtering (weighted means formalism):
 - update of the state vector: $\mathbf{x}_k = C_k \left[(C_k^{k-1})^{-1} \mathbf{x}_k^{k-1} + H_k^T V_k^{-1} \mathbf{m}_k \right]$
 - update of the covariance matrix: $C_k = \left[(C_k^{k-1})^{-1} + H_k^T V_k^{-1} H_k \right]^{-1}$
 - χ^2 update: $\chi^2_k = \chi^2_{k-1} + \mathbf{r}_k^T V_k^{-1} \mathbf{r}_k + (\mathbf{x}_k^T \mathbf{x}_k^{k-1})^T (C_k^{k-1})^{-1} (\mathbf{x}_k^T \mathbf{x}_k^{k-1})$

イロト 不得下 イヨト イヨト 二日

Properties of the algorithm

- An additional step ("smoothing" or back propagation) allows one to evaluate the state vector at all previous planes taking into account all measurements
- Since χ^2 is evaluated at each step, it is easy to compare the candidates and pick (a few) best continuation(s) and detect outliers
- The method can be also used to fit vertex positions and separate secondary vertices from primary ones
- Generalizations:
 - deterministic annealing filter
 - Gaussian-sum filter
- Oredits:
 - ▶ R. E. Kalman, J. Basic Eng. Mar 1960, 82(1) 35
 - P. Billoir, Nucl. Instr. and Meth. 225 (1984) 352: proposed the method for track finding without recognizing it as Kalman filter
 - R. Frühwirth, Nucl. Instr. and Meth. A262 (1987) 444: all you need to know about track and vertex fitting with Kalman filtering

イロト 不得下 イヨト イヨト 二日

Histogramming

- When we are searching for new resonances, we are looking for signal peaks over flat background
- Sometimes the information about objects is spread out over the data, like in a hologram
- Can we bring it together to form a peak?

Histogramming

- When we are searching for new resonances, we are looking for signal peaks over flat background
- Sometimes the information about objects is spread out over the data, like in a hologram
- Can we bring it together to form a peak?

Hough transform

- Trajectories originated from (0,0) can be described as $\rho r = 2\sin(\phi \phi_0)$, where ϕ_0 is the trajectory slope at r = 0, and ρ is the curvature (signed inverse radius)
- This can be thought as a transformation from (x, y) space to (φ₀, ρ) space
 - in (x, y) space, each trajectory is a line, and measurements are points
 - in (ϕ_0, ρ) space, each trajectory is a point, and measurements are lines
 - lines from measurements of the same trajectory intersect at the same point which is the (φ₀, ρ) parameters of this trajectory

Hough transform

- Trajectories originated from (0,0) can be described as $\rho r = 2\sin(\phi \phi_0)$, where ϕ_0 is the trajectory slope at r = 0, and ρ is the curvature (signed inverse radius)
- This can be thought as a transformation from (x, y) space to (φ₀, ρ) space
 - in (x, y) space, each trajectory is a line, and measurements are points
 - in (ϕ_0, ρ) space, each trajectory is a point, and measurements are lines
 - lines from measurements of the same trajectory intersect at the same point which is the (φ₀, ρ) parameters of this trajectory

Wavelets

- What is wavelet?
 - ▶ it's kind of Fourier transform, but instead of sine/cosine basis it uses special kind of functions called wavelets: $X_{a,b} = \int_{-\infty}^{+\infty} x(t)\psi_{a,b}(t) dt$ (*a*=scale, *b*=translation)
- Regular Fourier transform doesn't catch local bursts in frequency (basically, it gets spikes in frequency but it doesn't know where they happen)
 - wavelets try to take care of that
- There are many various types of wavelets
 - for my example, I picked Daubechies 4-tap wavelets

Wavelets: strong signal

- Original signal: $1+2\times$ Gaus(0.3,0.02)
- Filter: Daubechies-4 wavelets

A. Khanov (PHYS6260, OSU)

PHYS6260

Wavelets: weak signal

- Original signal: 1+0.2×Gaus(0.3,0.02)
- Filter: Daubechies-4 wavelets

