# Multivariate analysis 

Alexander Khanov<br>PHYS6260: Experimental Methods is HEP Oklahoma State University

November 1, 2023

## Separation of signal from background

- 1d case: straightforward
- plot signal and background distributions of the discriminating variable
- optimize the cut to obtain the best sensitivity
- Approximate figure of merit: significance $S=s / \sqrt{b}$
- A better figure of merit: optimizing the likelihood ratio $L(S+B) / L(B)$

$$
S_{\mathrm{CL}}=\sqrt{2((s+b) \ln (1+s / b)-s)}
$$





- What to do if there are more than one input variable?


## Multivariate case

- There are typically $\gg 1$ variables
- it's not easy to see the overall picture
- Some of the variables may be correlated









## Grid search (a.k.a. cut and count)

- Try all combinations of cuts, pick the one that provides the best significance




## Linear discriminants

- Fisher discriminant: $F=\sum w_{i} x_{i}$
- weights $w_{i}$ are chosen in such a way that to optimize the separation
- In our example, $F=\operatorname{Var} 1+\operatorname{Var} 2$ works the best








## Likelihood

- Given pdf's for signal $s=\prod s_{i}$ and background $b=\prod b_{i}$, the likelihood discriminator is $L=\frac{s}{s+b}$



- Simple likelihood doesn't work well if the variables are correlated
- a variation of the method transforms the variables such that their correlation matrix becomes diagonal
- this is a linear approximation, so not perfect


## Decision trees

- Optimize one cut at a time, split the sample into subsets




## Boosted decision trees

- The idea is to combine many weak learners (trees trained on random subsets of the training sample) into a powerful classifier
- The simplest approach is to train an ensemble of trees (all in parallel) and combine their inputs by the majority vote
- this approach is known as random forests
- Boosting is a method based on iterative tree training
- the output of the algorithm is a weighted sum of all trees trained so far
- each event used for training is also assigned a weight based on how "difficult" it is: the events that are misclassified get their weight increased and vice versa


## $k$ nearest neighbors

- This is an example of a nonparametric method
- the effective number of model parameters grows with the data set size
- Training sample: a set of labeled points
- The algorithm: for each point $\mathbf{x}$ to be classified, its label is defined as majority of labels among $k$ points from the training sample that are closest to x





## $k$ nearest neighbors (2)

- The method efficiently works with complicated topologies
- It can be used for regression: the value assigned to the points is calculated as mean of its $k$ closest neighbor values


$k=5$

