Multivariate analysis

Alexander Khanov

PHYS6260: Experimental Methods is HEP Oklahoma State University

November 1, 2023

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

Separation of signal from background

- 1d case: straightforward
 - plot signal and background distributions of the discriminating variable
 - optimize the cut to obtain the best sensitivity
- Approximate figure of merit: significance $S = s/\sqrt{b}$
- A better figure of merit: optimizing the likelihood ratio L(S+B)/L(B)

$$S_{ ext{CL}} = \sqrt{2((s+b)\ln(1+s/b)-s)}$$

• What to do if there are more than one input variable?

Multivariate case

- There are typically $\gg 1$ variables
 - it's not easy to see the overall picture
- Some of the variables may be correlated

Grid search (a.k.a. cut and count)

• Try all combinations of cuts, pick the one that provides the best significance

Linear discriminants

• Fisher discriminant: $F = \sum w_i x_i$

• weights w_i are chosen in such a way that to optimize the separation

• In our example, F = Var1 + Var2 works the best

イロト イ団ト イヨト イヨト

Likelihood

• Given pdf's for signal $s = \prod s_i$ and background $b = \prod b_i$, the likelihood discriminator is $L = \frac{s}{s+b}$

• Simple likelihood doesn't work well if the variables are correlated

- a variation of the method transforms the variables such that their correlation matrix becomes diagonal
- this is a linear approximation, so not perfect

Decision trees

• Optimize one cut at a time, split the sample into subsets

A. Khanov (PHYS6260, OSU)

PHYS6260

11/1/23 7 / 10

Boosted decision trees

- The idea is to combine many weak learners (trees trained on random subsets of the training sample) into a powerful classifier
- The simplest approach is to train an ensemble of trees (all in parallel) and combine their inputs by the majority vote
 - this approach is known as random forests
- Boosting is a method based on iterative tree training
 - the output of the algorithm is a weighted sum of all trees trained so far
 - each event used for training is also assigned a weight based on how "difficult" it is: the events that are misclassified get their weight increased and vice versa

k nearest neighbors

- This is an example of a nonparametric method
 - the effective number of model parameters grows with the data set size
- Training sample: a set of labeled points
- The algorithm: for each point **x** to be classified, its label is defined as majority of labels among k points from the training sample that are closest to **x**

k nearest neighbors (2)

- The method efficiently works with complicated topologies
- It can be used for regression: the value assigned to the points is calculated as mean of its *k* closest neighbor values

