Neural networks

Alexander Khanov

PHYS6260: Experimental Methods is HEP Oklahoma State University

November 3, 2023

Formulation of the problem

- Let \mathbf{x} be the input variables ("features"), and \mathbf{y} be the outputs ("labels")
- the labels can be binary (classification), or continuous (regression)
- Consider a function $\mathbf{y}=\mathbf{f}(\mathbf{x}, \mathbf{p})$ that depends on a vector of parameters \mathbf{p}
- Given a training set $\left\{\left(\mathbf{x}_{i}, \mathbf{y}_{i}\right)\right\}$ of \mathbf{x}, \mathbf{y} pairs, we want to find the values of \mathbf{p} that minimize the distance between $\mathbf{f}\left(\mathbf{x}_{i}, \mathbf{p}\right)$ and \mathbf{y}_{i} (" loss function")
- an example of distance is mean squared loss $\chi^{2}=\sum_{i}\left(\mathbf{y}_{i}-\mathbf{f}\left(\mathbf{x}_{i}, \mathbf{p}\right)\right)^{2}$
- The task is to come up with a "model" (the actual function $\mathbf{f}(\mathbf{x}, \mathbf{p})$) and "train" it (calculate the optimal values of \mathbf{p})

Limitations of MVA methods

- The MVA methods we have considered so far are fairly limited in terms of problems they can solve
- Canonical example: the XOR problem $\left(x_{1}, x_{2}\right) \rightarrow y$

$$
\text { binary: }(0,0) \rightarrow 0,(1,0) \rightarrow 1,(0,1) \rightarrow 1,(1,1) \rightarrow 0
$$

continuous: 0 if $\left(x_{1}-0.5\right)\left(x_{2}-0.5\right)>0,1$ otherwise

Limitations of MVA methods (2)

- XOR problem is not linearly solvable
- no matter how you draw the separation line, it will only correctly classify 3 out of 4 points at most

- Decision trees will also be in trouble since they look at one variable at a time

meaningless - the order is arbitrary

good for $x_{2}<0.5$

good for $x_{2}>0.5$

Limitations of MVA methods (3)

- Many machine learning methods fail as the number of input variables becomes high
- the curse of dimensionality: the number of possible distinct configurations increases exponentially with the number of variables
- can't evaluate statistical density for cells without training examples

- Machine learning algorithms need some idea on what kind of function they are trying to learn
- a typical assumption is smoothness (local constancy)
- this approach does not work well for small training examples created by complicated underlying functions

Neural network structure

- A simple neural network consists of "layers" which are collections of "neurons"
- a neuron i in layer j is characterised by its "activation value" a_{i}^{j}
- the activation values of neurons in layer $j+1$ are related to those in the previous layer j as $a_{i}^{j+1}=\sigma\left(\sum_{k} w_{i k}^{j} a_{k}^{j}+b_{i}^{j}\right)$, where $\sigma(t)$ is "activation function", $w_{i k}^{j}$ are "weights", and b_{i}^{j} are "biases"
- In order for the NN to work, $\sigma(t)$ must be nonlinear

Example: linear activation

- For the XOR problem, consider linear activation function $\sigma(t)=t$
- The NN with linear activation will look like $y=b+w_{1} x_{1}+w_{2} x_{2}$ (two inputs x_{1}, x_{2}, one output y)
- minimizing the mean squared loss $\chi^{2}=\sum_{i}\left(y_{i}-\left(b+w_{1} x_{1 i}+w_{2} x_{2 i}\right)\right)^{2}$, we arrive at

$$
\left\{\begin{array}{lll}
b \sum_{i} 1+w_{1} \sum_{i} x_{1 i} & +w_{2} \sum_{i} x_{2 i} & =\sum_{i} y_{i} \\
b \sum_{i} x_{1 i}+w_{1} \sum_{i} x_{1 i}^{2} & +w_{2} \sum_{i} x_{1 i} x_{2 i} & =\sum_{i} x_{1 i} y_{i} \\
b \sum_{i} x_{2 i}+w_{1} \sum_{i} x_{1 i} x_{2 i} & +w_{2} \sum_{i} x_{2 i}^{2} & =\sum_{i} x_{2 i} y_{i}
\end{array}\right.
$$

- using the set $\left\{\left(x_{1 i}, x_{2 i}, y_{i}\right)\right\}=\{(0,0,0),(1,0,1),(0,1,1),(1,1,0)\}$, we find $b=0.5, w_{1}=w_{2}=0$
- Our "NN" always returns 0.5 - linear activation doesn't work

Example: RELU activation

- The activation function does not have to be complicated
- RELU: $R(t)=\left\{\begin{array}{l}0, t<0 \\ t, t \geq 0\end{array}\right.$
- Consider a NN with one hidden layer of two neurons:
$\left\{\begin{array}{l}h_{1}=R\left(W_{11} x_{1}+W_{21} x_{2}+b_{1}\right) \\ h_{2}=R\left(W_{12} x_{1}+W_{22} x_{2}+b_{2}\right) \\ y=w_{1} h_{1}+w_{2} h_{2}\end{array}\right.$

- $W=\left(\begin{array}{ll}1 & 1 \\ 1 & 1\end{array}\right), \mathbf{b}=\binom{0}{-1}, \mathbf{w}=\binom{1}{-2}$ does the trick:

x_{1}	x_{2}	h_{1}	h_{2}	y
0	0	0	0	0
1	0	1	0	1
0	1	1	0	1
1	1	2	1	0

The power of NN

- Can NN solve any problem?
- yes
- Universal approximation theorem (G. Cybenko): arbitrary decision regions can be arbitrarily well approximated by continuous feedforward neural networks with a single hidden layer and any continuous sigmoidal nonlinearity
- namely, if σ is a "sigmoid" $\left(\lim _{t \rightarrow-\infty} \sigma(t)=0, \lim _{t \rightarrow \infty} \sigma(t)=1\right)$, then for any continuous function $f(\mathbf{x})$ defined on a unit cube, for any ε there is a sum of form

$$
G(\mathbf{x})=\sum_{j=1}^{N} \alpha_{j} \sigma\left(\mathbf{y}_{j}^{\mathrm{T}} \mathbf{x}+\theta_{j}\right)
$$

such that $|G(\mathbf{x})-f(\mathbf{x})|<\varepsilon$ for all \mathbf{x}

- $\sigma(t)$ does not have to be a sigmoid, it just has to satisfy certain conditions

NN training

- For a simple NN with one hidden layer of n neurons, the number of parameters is small, and they can be found by a universal minimizer (like Minuit)
- example: use the formula for $G(\mathbf{x})$ to approximate $f\left(x_{1}, x_{2}\right)=\left(x_{1}-x_{2}\right)^{2}$ (takes care of the XOR problem)
- for two inputs, one output, and n neurons in the hidden layer, the number of parameters is $4 n$
- let $\sigma(t)=1 /(1+\exp (-t))$

- In practice, large NNs are trained using iterative gradient-based optimizing procedures

