
Neural networks

Alexander Khanov

PHYS6260: Experimental Methods is HEP
Oklahoma State University

November 3, 2023

Formulation of the problem

Let x be the input variables (”features”), and y be the outputs
(”labels”)

I the labels can be binary (classification), or continuous (regression)

Consider a function y = f(x,p) that depends on a vector of
parameters p

Given a training set {(xi , yi)} of x, y pairs, we want to find the values
of p that minimize the distance between f(xi ,p) and yi (”loss
function”)

I an example of distance is mean squared loss χ2 =
∑
i

(yi − f(xi ,p))2

The task is to come up with a ”model” (the actual function f(x,p))
and ”train” it (calculate the optimal values of p)

A. Khanov (PHYS6260, OSU) PHYS6260 11/3/23 2 / 10

Limitations of MVA methods

The MVA methods we have considered so far are fairly limited in
terms of problems they can solve

Canonical example: the XOR problem (x1, x2)→ y

binary: (0, 0)→ 0, (1, 0)→ 1, (0, 1)→ 1, (1, 1)→ 0

continuous: 0 if (x1 − 0.5)(x2 − 0.5) > 0, 1 otherwise

A. Khanov (PHYS6260, OSU) PHYS6260 11/3/23 3 / 10

Limitations of MVA methods (2)

XOR problem is not linearly solvable
I no matter how you draw the separation line, it will only correctly

classify 3 out of 4 points at most

Decision trees will also be in trouble since they look at one variable at a time

meaningless – the order is arbitrary good for x2 < 0.5 good for x2 > 0.5

A. Khanov (PHYS6260, OSU) PHYS6260 11/3/23 4 / 10

Limitations of MVA methods (3)

Many machine learning methods fail as the number of input variables
becomes high

I the curse of dimensionality: the number of possible distinct
configurations increases exponentially with the number of variables

I can’t evaluate statistical density for cells without training examples

”Deep learning,” I. Goodfellow, Y. Bengio, and A. Courville

Machine learning algorithms need some idea on what kind of function
they are trying to learn

I a typical assumption is smoothness (local constancy)
I this approach does not work well for small training examples created by

complicated underlying functions

A. Khanov (PHYS6260, OSU) PHYS6260 11/3/23 5 / 10

Neural network structure

A simple neural network consists of ”layers” which are collections of
”neurons”

I a neuron i in layer j is characterised by its ”activation value” aji
I the activation values of neurons in layer j + 1 are related to those in

the previous layer j as aj+1
i = σ

(∑
k

w j
ika

j
k + bji

)
, where σ(t) is

”activation function”, w j
ik are ”weights”, and bji are ”biases”

In order for the NN to work, σ(t) must be nonlinear

A. Khanov (PHYS6260, OSU) PHYS6260 11/3/23 6 / 10

Example: linear activation

For the XOR problem, consider linear activation function σ(t) = t

The NN with linear activation will look like y = b + w1x1 + w2x2 (two
inputs x1, x2, one output y)

I minimizing the mean squared loss χ2 =
∑
i

(yi − (b + w1x1i + w2x2i))2,

we arrive at b
∑

i 1 + w1

∑
i x1i + w2

∑
i x2i =

∑
i yi

b
∑

i x1i + w1

∑
i x

2
1i + w2

∑
i x1ix2i =

∑
i x1iyi

b
∑

i x2i + w1

∑
i x1ix2i + w2

∑
i x

2
2i =

∑
i x2iyi

I using the set {(x1i , x2i , yi)} = {(0, 0, 0), (1, 0, 1), (0, 1, 1), (1, 1, 0)},
we find b = 0.5, w1 = w2 = 0

Our ”NN” always returns 0.5 – linear activation doesn’t work

A. Khanov (PHYS6260, OSU) PHYS6260 11/3/23 7 / 10

Example: RELU activation

The activation function does not have to be complicated

I RELU: R(t) =

{
0, t < 0
t, t ≥ 0

Consider a NN with one hidden layer of two neurons:
h1 = R(W11x1 + W21x2 + b1)
h2 = R(W12x1 + W22x2 + b2)
y = w1h1 + w2h2

W =

(
1 1
1 1

)
, b =

(
0
−1

)
, w =

(
1
−2

)
does the trick:

x1 x2 h1 h2 y

0 0 0 0 0
1 0 1 0 1
0 1 1 0 1
1 1 2 1 0

A. Khanov (PHYS6260, OSU) PHYS6260 11/3/23 8 / 10

The power of NN

Can NN solve any problem?
I yes

Universal approximation theorem (G. Cybenko): arbitrary decision
regions can be arbitrarily well approximated by continuous
feedforward neural networks with a single hidden layer and any
continuous sigmoidal nonlinearity

I namely, if σ is a ”sigmoid” (limt→−∞ σ(t) = 0, limt→∞ σ(t) = 1),
then for any continuous function f (x) defined on a unit cube, for any ε
there is a sum of form

G (x) =
N∑
j=1

αjσ(yTj x + θj)

such that |G (x)− f (x)| < ε for all x
I σ(t) does not have to be a sigmoid, it just has to satisfy certain

conditions

A. Khanov (PHYS6260, OSU) PHYS6260 11/3/23 9 / 10

NN training

For a simple NN with one hidden layer of n neurons, the number of
parameters is small, and they can be found by a universal minimizer
(like Minuit)

I example: use the formula for G (x) to approximate
f (x1, x2) = (x1 − x2)2 (takes care of the XOR problem)

I for two inputs, one output, and n neurons in the hidden layer, the
number of parameters is 4n

I let σ(t) = 1/(1 + exp(−t))

target function NN, n = 2 NN, n = 4

In practice, large NNs are trained using iterative gradient-based
optimizing procedures

A. Khanov (PHYS6260, OSU) PHYS6260 11/3/23 10 / 10

