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Formulation of the problem

@ Let x be the input variables ("features”), and y be the outputs
("labels™)

> the labels can be binary (classification), or continuous (regression)

e Consider a function y = f(x, p) that depends on a vector of
parameters p

e Given a training set {(x;,y;)} of x, y pairs, we want to find the values
of p that minimize the distance between f(x;, p) and y; ("loss

function”)

» an example of distance is mean squared loss x2 = Z(y:‘ —f(x;,p))?

@ The task is to come up with a "model” (the actual function f(x, p))
and "train” it (calculate the optimal values of p)

A. Khanov (PHYS6260, OSU) PHYS6260 11/3/23 2/ 10



Limitations of MVA methods

@ The MVA methods we have considered so far are fairly limited in
terms of problems they can solve
@ Canonical example: the XOR problem (x1,x2) — y

binary: (0,0) — 0, (1,0) — 1, (0,1) — 1, (1,1) = 0

continuous: 0 if (x; — 0.5)(x2 — 0.5) > 0, 1 otherwise
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Limitations of MVA methods (2)

@ XOR problem is not linearly solvable

» no matter how you draw the separation line, it will only correctly
classify 3 out of 4 points at most
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Limitations of MVA methods (3)

@ Many machine learning methods fail as the number of input variables
becomes high
> the curse of dimensionality: the number of possible distinct
configurations increases exponentially with the number of variables
> can’t evaluate statistical density for cells without training examples
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" Deep learning,” 1. Goodfellow, Y. Bengio, and A. Courville
@ Machine learning algorithms need some idea on what kind of function
they are trying to learn
> a typical assumption is smoothness (local constancy)
> this approach does not work well for small training examples created by
complicated underlying functions
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Neural network structure

@ A simple neural network consists of "layers” which are collections of
"neurons”

> a neuron i in layer j is characterised by its " activation value” a!

> the activation values of neurons in layer j + 1 are related to those in

the previous layer j as @' = ¢ Z Wl’kaf( + b{) where o(t) is
K

"activation function”, W,’k are "weights”, and b/ are "biases”

@ In order for the NN to work, o(t) must be nonlinear
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Example: linear activation

@ For the XOR problem, consider linear activation function o(t) =t

@ The NN with linear activation will look like y = b+ wixi + waxz (two
inputs xi, x2, one output y)

» minimizing the mean squared loss x? = Z(y; — (b + wixij + waxz))?,

we arrive at

by 1

+ wm Z,'Xli

by ixi + wiylxg
bzixz,- + le,-xlix2i + WQZiX22i

i

+ wp E,'X2i
+ W) Xxiixo

Zi}’i
Z,'Xli}’i
> XY

» using the set {(x1;, %21, yi)} = {(0,0,0),(1,0,1),(0,1,1),(1,1,0)},
we find b=10.5, wy = wr, =0

@ Our "NN" always returns 0.5 — linear activation doesn't work
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Example: RELU activation

@ The activation function does not have to be complicated

, [o0t<0
» RELU: R(t) _{ Lt 0
@ Consider a NN with one hidden layer of two neurons:

X, My
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The power of NN

@ Can NN solve any problem?
> yes
@ Universal approximation theorem (G. Cybenko): arbitrary decision
regions can be arbitrarily well approximated by continuous
feedforward neural networks with a single hidden layer and any
continuous sigmoidal nonlinearity
» namely, if o is a "sigmoid” (lim;_oo o(t) =0, limioo o(t) = 1),
then for any continuous function f(x) defined on a unit cube, for any

there is a sum of form
N

G(x) = Z aja(yJTx +0;)

j=t

such that |G(x) — f(x)| < € for all x
» o(t) does not have to be a sigmoid, it just has to satisfy certain
conditions
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NN training

@ For a simple NN with one hidden layer of n neurons, the number of
parameters is small, and they can be found by a universal minimizer
(like Minuit)

» example: use the formula for G(x) to approximate
f(x1,x2) = (x1 — x2)? (takes care of the XOR problem)

» for two inputs, one output, and n neurons in the hidden layer, the
number of parameters is 4n

> let o(t) = 1/(1 + exp(—t))

target function NN, n=4

@ In practice, large NNs are trained using iterative gradient-based
optimizing procedures
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