
AI for HEP

Alexander Khanov

Oklahoma State University

PHYS 5503, April 30, 2025

Outline

• Overview of AI/ML

• HEP use case 1: flavor tagging

– ATL-PHYS-PUB-2022-027,
https://cds.cern.ch/record/2811135

• HEP use case 2: anomaly detection

– Phys. Rev. Lett. 132 (2024) 081801

Alexander Khanov, OSU 22/20/23

Credits: Jacob Crosby

https://cds.cern.ch/record/2811135

Machine learning

• Textbook definitions:
– AI: ability of computers to perform cognitive tasks

traditionally attributed to humans
– ML: a subset of AI dedicated to teaching computers to

extract patterns from data

• These definitions are not ideal for HEP
applications
– classical AI applications like quality assurance: humans

can do it
– pattern recognition and big data processing: humans

can’t do it (because of data precision and/or size)

Alexander Khanov, OSU 32/20/23

ML: formulation of the problem

• Consider a multivariate function y=f(x,p) (“model”)
– x (a vector): inputs (“features”)
– y (in general, a vector): outputs (“labels”), can be binary

(“classification”) or continuous (“regression”), simplest
case is a single binary output (signal/background
separation)

– p (a vector): parameters

• The goal is to find p that optimizes f (“train the model”)
– given a set of {(xk,yk)} pairs (“training set”), find p that

minimizes the distance between f and y (“loss function”)
– a possible (but not the only one) choice for distance is

mean squared loss χ2=Σjk(yjk – fj(xk, p))2

– the hope is that, once trained, the model will correctly
predict y for any x

2/20/23 Alexander Khanov, OSU 4

ML methods

• Straightforward separation

– Can be done in many dimensions

2/20/23 Alexander Khanov, OSU 5

ROC curve

input

SCL

large
small

ML methods (2)

• Grid search (a.k.a. cut
and count)
– try all combinations of

thresholds, pick the best

2/20/23 Alexander Khanov, OSU 6

• Linear discriminants
– Fisher discriminant: f(x,p) = Σi(pixi)

in our example, the
optimal choice is
f=x1+x2

ML methods (3)

• Decision trees: optimize
one threshold at a time

2/20/23 Alexander Khanov, OSU 7

• Boosted decision trees: create many trees, take as
the output their weighted sum

ML methods (4)

• k nearest neighbors
– a non-parametric method: the number of parameters

grows with the training set size
– efficient for complicated topologies
– can be used for regression

2/20/23 Alexander Khanov, OSU 8

Case for better ML methods

• The methods we considered so far are
often not able to solve trivial problems

– canonical example: the XOR problem
(0,0)->0, (1,0)->1, (0,1)->1, (1,1)->0

2/20/23 Alexander Khanov, OSU 9

not linearly solvable

Many ML methods fail when the
number of inputs becomes large:
can’t evaluate statistical density for
cells without training examples

Simple neural networks

• A simple NN consists of “layers” which are collections
of “neurons”
– a neuron i in layer j is characterized by its “activation

value” ai
j

ai
j+1 = σ(Σk(wik

j ai
j) + bi

j)
– σ = “activation function”, w = “weights”, b = “biases”

• In order for NN to work, some σ must be non-linear

2/20/23 Alexander Khanov, OSU 10

Simple neural networks (2)

• The XOR problem: linear activation function
– y = w1 x1 + w2 x2 + b
– minimizing, we’ll get w1=w2=0, b=0.5 – bad 

• ReLU activation:

2/20/23 Alexander Khanov, OSU 11

Simple neural networks (3)

• An NN can solve any problem: universal
approximation theorem
– arbitrary decision regions can be arbitrarily well

approximated by continuous feedforward neural
networks with a single hidden layer and any
continuous sigmoidal nonlinearity

2/20/23 Alexander Khanov, OSU 12

NN training

• In general, any optimization algorithm would work
• XOR problem example:

f(x1, x2)=(x1-x2)2

– consider a NN with n neutrons in a single hidden layer

2/20/23 Alexander Khanov, OSU 13

target function NN, n=2 NN, n=4

• In practice, large NNs are trained using iterative gradient-based
optimizing procedures

• Popular frameworks: TensorFlow / PyTorch

There are many NN types!

2/20/23 Alexander Khanov, OSU 14

• a picture popular
several years ago

HEP inputs

• The data from particle collisions arrives in a form of “events”
– an event = a snapshot of detector response taken when there seems

to be something interesting

• While it is possible to apply ML techniques to raw data, a typical
HEP analysis deals with “objects”
– muons
– electrons
– individual particles (“tracks”)
– jets: collimated bunches of particles due to quarks or gluons
– missing momentum: indicates presence of neutrinos or BSM

• Objects are mainly represented as 4-vectors, but may have other
properties (e.g. EM fraction for jets)

• The number of objects of each type typically varies
– if using NNs, need to apply “padding” (fix the maximum number of

objects of a given type and replace the rest with zeros)

• The order of objects doesn’t matter (recurrent NNs don’t work)
2/20/23 Alexander Khanov, OSU 15

Use case 1: flavor tagging

• Jet tagging as an example of HEP pattern
recognition

• Evolution of ML algorithms

• GN1 and GN2 taggers in ATLAS

Alexander Khanov, OSU 162/20/23

Jet flavor tagging 101

• Jet flavor tagging: identification of jets originating from b- and c-quarks
– a b-jet is a jet that contains a B-hadron (decided by ghost association)
– a c-jet is a jet that does not contain B-hadrons but contains a D-hadron
– all other jets (except τ-jets) are called light

• Flavor tagging algorithm: a method to detect b- and c-jets
– relies on significant lifetime of B/D hadrons
– two main approaches based on either tracks with large impact parameter (IP)

or explicit reconstruction of secondary vertices (SV)

• Performance of tagging algorithms is characterized by b-tagging efficiency
εb (probability to correctly identify a b-jet) vs mistag rate εl (probability to
misidentify a light jet as a b-jet)
– εl as a function of εb is known as a ROC curve
– similarly, the c-tagging performance is described by a εc vs εb ROC curve

• To be useful for physics analyses, the performance of the tagging
algorithm needs to be calibrated against real data
– since the calibration procedure is cumbersome, only a few points on the ROC

curve (working points, WP) are used
– physics analyses pick a WP that best suits their needs

2/20/23 Alexander Khanov, OSU 17

Evolution of tagging algorithms

• Low level algorithms: IP3D, SV1, JetFitter
– likelihood based algorithms looking at track IPs or SVs
– limited consideration of track parameter correlations

• Combinations of low-level algorithms: IP3D+SV1
• Multivariate combination of low-level algorithms based

on boosted decision trees: MV2
• Neural Network combination: DL1 and its flavors

– DL1: original (IP3D+SV1+JetFitter)
– DL1r: IP3D replaced with recurrent NN (RNNIP)
– DL1d: RNNIP replaced with deep sets NN (DIPS)

• Graph Neural Network: GN1

2/20/23 Alexander Khanov, OSU 18

GN1 overview

• GN1: graph NN with
direct track input

• Why the new algorithm?
– improved performance

(of course)
– flexibility: no need to

re-optimize low-level
taggers for a new task
(Xbb, c-tagging,…)

– better insight into
tagging process
(auxiliary vertex and
track origin
predictions)

2/20/23 Alexander Khanov, OSU 19

GN1 model

• Inputs: two jet variables (pT, η) and ntracks×21 tracking variables (ntracks≤40)
– five track parameters + their uncertainties (q/p, direction relative to the jet

axis, track IP in transverse and longitudinal plane)
– hit patterns
– (optional) lepton track ID

• Labels: jet flavor (b, c, light)
• Auxiliary training objectives

– track origin (pileup, fake, primary, b, bc, c, other secondary)
– track-pair vertex compatibility (binary)

2/20/23 Alexander Khanov, OSU 20

rescaled to mean=1, var=1

Architecture

• Inputs are fed into a per-track
initialization network (3 hidden + 1
output layer ×64 neurons)

• Outputs (latent track representations)
are used to populate a fully connected
GNN (a node = a track)

• Resulting node representations
are fed to classification networks

2/20/23 Alexander Khanov, OSU 21

Network Hidden layers Output

Node 128,64,32 7

Edge 128,64,32 1

Graph 128,64,32,16 3

GN1: Graph NN
GN2: Transformer

main output

auxiliary tasks

Training

• MC samples: tt̅l+jet/dileptons, Z’qq̅ (flat jet pT up to
5 TeV, equal bb̅/cc̅/light)
– 30M jets (60% tt̅ + 40% Z’)

• Goal: minimize total loss Ltotal=Ljet+αLvertex+βLtrack

– Ljet: categorical cross entropy loss over jet flavors
– Lvertex: binary cross entropy loss averaged over track pairs
– Ltrack: categorical cross entropy loss over track origins

• Optimal choice: α=1.5, β=0.5
– verified that the algorithm works with Ljet minimization alone

2/20/23 Alexander Khanov, OSU 22

Performance

Alexander Khanov, OSU 23

significant
improvement in both
light and c-jet rejection
(×~2 at 70% WP)

b-tag score: 𝐷𝑏 = log
𝑝𝑏

1−𝑓𝑐 𝑝𝑙+𝑓𝑐𝑝𝑐

fraction of c-jets (0.05)

60%
WP

85%
WP

70%
WP

with lepton id

ATL-PHYS-PUB-2022-027

https://cds.cern.ch/record/2811135

Performance (2)

• Improvement in b-tagging efficiency at fixed mistag rate (0.01) is
particularly significant at large jet pT

• Vertexing performance: inclusive b-vertex reco efficiency ~80%
• Track classification performance: weighted AUC ~0.95

2/20/23 Alexander Khanov, OSU 24

Flavor tagging summary

• GN1 is a novel jet tagger based on graph NN
architecture and trained with auxiliary training targets
– shown to significantly improve flavor tagging performance

compared to the current ATLAS base line tagger (DL1r)

• Flexible, easier to optimize, simpler to maintain

• Demonstrates improved track classification
performance and high b-tagging vertex finding
efficiency
– looking for further improvements due to in-depth tuning

of NN configurations, better modeling (simulation of
interaction of B/D hadrons), improved pileup jet rejection

2/20/23 Alexander Khanov, OSU 25

Use case 2: search for new physics
using anomaly detection

• The idea: look for events with “abnormal”
kinematics

2/20/23 Alexander Khanov, OSU 26

– train the NN on 1% of
all data, obtain the loss
function

– For events with
abnormally large loss,
fit the invariant mass
distributions with a
smooth curve, look for
bumps

Anomaly regions

AD: inputs

• Input space: rapidity mass matrix (NIM A 931 (2019) 92)
– Lorentz invariant under boosts along the longitudinal axes
– single and two-particle densities for each particle or jet
– dimensionless, normalized to (0,1)
– fixed size
– good for visualization

2/20/23 Alexander Khanov, OSU 27

AD model: AutoEncoder

• 1287 inputs/outputs (RMM values except inv. masses)
• Leaky RELU activation for all layers

2/20/23 Alexander Khanov, OSU 28

AD results

• No BSM discovery, quite a few
interesting events

2/20/23 Alexander Khanov, OSU 29

AD summary

• The discovery sensitivity shows a large improvement
after the anomaly region selection, which is illustrated
using several benchmark BSM models

• The analysis sets 95% CL upper limits on contributions
from generic Gaussian signals to the studied invariant
mass distributions

• Compared to previous limits without anomaly region
selections, the reported model-independent limits
have a stronger potential to exclude generic heavy
states with complex decay modes

2/20/23 Alexander Khanov, OSU 30

Backup

Alexander Khanov, OSU 312/20/23

ROC curves

• ROC = Receiver Operation Characteristic
• Developed by electrical engineers during WWII to

characterize radar operation

2/20/23 Alexander Khanov, OSU 32

S/B separation figures of merit

2/20/23 Alexander Khanov, OSU 33

Likelihood

• Likelihood: L=s/(s+b),
s=Π(xi), y=1
b=Π(xi), y=0

• Doesn’t consider correlations – this can be fixed by
diagonalizing the inputs

2/20/23 Alexander Khanov, OSU 34

Popular activation functions

2/20/23 Alexander Khanov, OSU 35

Step

Rectified Linear Unit

Sigmoid

tanh

Linear

Leaky ReLU

Loss functions for classification

2/20/23 Alexander Khanov, OSU 36

