ATLAS

EXPERIMENT

Al for HEP

Alexander Khanov
Oklahoma State University

PHYS 5503, April 30, 2025



Outline

e QOverview of Al/ML

 HEP use case 1: flavor tagging

— ATL-PHYS-PUB-2022-027,
https://cds.cern.ch/record/2811135

 HEP use case 2: anomaly detection
— Phys. Rev. Lett. 132 (2024) 081801

Credits: Jacob Crosby
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Machine learning

e Textbook definitions:

— Al: ability of computers to perform cognitive tasks
traditionally attributed to humans

— ML: a subset of Al dedicated to teaching computers to
extract patterns from data

* These definitions are not ideal for HEP
applications

— classical Al applications like quality assurance: humans
cando it

— pattern recognition and big data processing: humans
can’t do it (because of data precision and/or size)
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ML: formulation of the problem

* Consider a multivariate function y=f(x,p) (“model”)
— X (a vector): inputs (“features”)

— y (in general, a vector): outputs (“labels”), can be binary
(“classification”) or continuous (“regression”), simplest
case is a single binary output (signal/background
separation)

— p (a vector): parameters

 The goalis to find p that optimizes f (“train the model”)

— given a set of {(x,,y,)} pairs (“training set”), find p that
minimizes the distance between fand y (“loss function”)

— a possible (but not the only one) choice for distance is
mean squared loss x*=Z; (v, — fi(x,, p))°

— the hope is that, once trained, the model will correctly
predict y for any x
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ML methods (2)

* Grid search (a.k.a. cut
and count)

— try all combinations of
thresholds, pick the best

* Linear discriminants
— Fisher discriminant: f(x,p) = Z.(p.x))
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ML methods (3)

War2

* Decision trees: optimize
one threshold at a time
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* Boosted decision trees: create many trees, take as
the output their weighted sum
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ML methods (4)

* k nearest neighbors

— a non-parametric method: the number of parameters
grows with the training set size

— efficient for complicated topologies
— can be used for regression
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Case for better ML methods

e The methods we considered so far are
often not able to solve trivial problems

— canonical example: the XOR problem
(0,0)->0, (1,0)->1, (0,1)->1, (1,1)->0

not linearly solvable

Many ML methods fail when the
number of inputs becomes large:
can’t evaluate statistical density for
cells without training examples



Simple neural networks

* Asimple NN consists of “layers” which are collections
of “neurons”

— a neuron i in layer j is characterized by its “activation
value” a/

altt = o(2, (w,] a)) + b))
— o = “activation function”, w = “weights”, b = “biases”
* |n order for NN to work, some o must be non-linear
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Simple neural networks (2)

 The XOR problem: linear activation function
—Y=W X+ W, X, +b
— minimizing, we’ll get w,=w,=0, b=0.5 —bad ®

) ) 0.t <0
* RelU activation: R(1) = { t >0
hl = R( W11X1 —+ W21X2 -+ bl) 2t hl
ho = R(Wi2x1 + Waaxa + bo) w}’
Yy = wi h1 + waho

1 1 0 1 _—
aW:(l 1),b:(_1),w:(_E)doesthetrlck.

O~ = Ol
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Simple neural networks (3)

 An NN can solve any problem: universal
approximation theorem

— arbitrary decision regions can be arbitrarily well
approximated by continuous feedforward neural
networks with a single hidden layer and any
continuous sigmoidal nonlinearity

namely, if o is a "sigmoid” (lim;,_o(t) =0, lim;. o(t) = 1),
then for any continuous function f(x) defined on a unit cube, for any ¢
there is a sum of form

N
G(x) =) ajo(y/x+6)
j=1

such that |G(x) — f(x)| < = for all x
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NN training

* |n general, any optimization algorithm would work
e XOR problem example:

f(Xl; X2)=(X1'X2)2
— consider a NN with n neutrons in a single hidden layer

target function

* |In practice, large NNs are trained using iterative gradient-based
optimizing procedures

* Popular frameworks: TensorFlow / PyTorch



There are many NN types!

A mostly complete chart of Markov Chain (MC) Hopfield Network (HN) Boltzmann Machine (BM)  Restricted BM (RBM) Deep Belief Network (DBN)
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HEP inputs

The data from particle collisions arrives in a form of “events”

— an event = a snapshot of detector response taken when there seems
to be something interesting

While it is possible to apply ML techniques to raw data, a typical
HEP analysis deals with “objects”

— muons

— electrons

— individual particles (“tracks”)

— jets: collimated bunches of particles due to quarks or gluons
— missing momentum: indicates presence of neutrinos or BSM

Objects are mainly represented as 4-vectors, but may have other
properties (e.g. EM fraction for jets)

The number of objects of each type typically varies

— if using NNs, need to apply “padding” (fix the maximum number of
objects of a given type and replace the rest with zeros)

The order of objects doesn’t matter (recurrent NNs don’t work)
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Use case 1: flavor tagging

e Jet tagging as an example of HEP pattern
recognition

e Evolution of ML algorithms

* GN1 and GN2 taggers in ATLAS

OSuU
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Jet flavor tagging 101

Jet flavor tagging: identification of jets originating from b- and c-quarks
— ab-jetis a jet that contains a B-hadron (decided by ghost association)
— ac-jet is a jet that does not contain B-hadrons but contains a D-hadron
— all other jets (except t-jets) are called light
Flavor tagging algorithm: a method to detect b- and c-jets
— relies on significant lifetime of B/D hadrons

— two main approaches based on either tracks with large impact parameter (IP)
or explicit reconstruction of secondary vertices (SV)

Performance of tagging algorithms is characterized by b-tagging efficiency
€, (probability to correctly identify a b-jet) vs mistag rate g, (probability to
misidentify a light jet as a b-jet)

— g as a function of g, is known as a ROC curve

— similarly, the c-tagging performance is described by a €_vs €, ROC curve
To be useful for physics analyses, the performance of the tagging
algorithm needs to be calibrated against real data

— since the calibration procedure is cumbersome, only a few points on the ROC
curve (working points, WP) are used

— physics analyses pick a WP that best suits their needs
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Evolution of tagging algorithms

* Low level algorithms: IP3D, SV1, JetFitter
— likelihood based algorithms looking at track IPs or SVs
— limited consideration of track parameter correlations
 Combinations of low-level algorithms: IP3D+SV1

* Multivariate combination of low-level algorithms based
on boosted decision trees: MV2
 Neural Network combination: DL1 and its flavors
— DL1: original (IP3D+SV1+JetFitter)
— DL1r: IP3D replaced with recurrent NN (RNNIP)
— DL1d: RNNIP replaced with deep sets NN (DIPS)

Graph Neural Network: GN1
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GN1 overview

e GN1: graph NN with
direct track input

Why the new algorithm?

— improved performance
(of course)

— flexibility: no need to
re-optimize low-level
taggers for a new task
(Xbb, c-tagging,...)

— better insight into
tagging process
(auxiliary vertex and
track origin
predictions)

_—— Simulation ———n -——— Simulation ———

' Associated ' Associated
Jet Jet
I tracks tracks

Manually
optimised
algorithms

Trained
algorithms

v

Track origins

High level
algorithm (DL1r)

Vertices

L — — — - JetFlavour L — — — & JetFlavour
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GN1 model

* Inputs: two jet variables (p;, n) and n,,. %21 tracking variables (n,,,..<40)

— five track parameters + their uncertainties (g/p, direction relative to the jet
axis, track IP in transverse and longitudinal plane)

— hit patterns

— (optional) lepton track ID rescaled to mean=1, var=1
e Labels: jet flavor (b, c, light)
e Auxiliary training objectives

— track origin (pileup, fake, primary, b, b—=>c, c, other secondary)

— track-pair vertex compatibility (binary)

Track inputs Combined Inputs

Jet inputs

Ntracks X Ntf Ntracks X (Njf + Nyf)
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Architecture

* Inputs are fed into a per-track Hidden |
initialization network (3 hidden + 1 skl

output layer x64 neurons)

* OQutputs (latent track representations)
are used to populate a fully connected Edge 128 64 32 1
GNN (a node = a track) Y

e Resulting node representations /V Graph 128,64,32,16 3
are fed to classification networks

Node 128,64,32

main output
GN1: Graph NN booled graph »

GN2: Transformer \ GNN fepresemation

l—.- —-‘.——

Combined Intial track
Inputs representation

Jet flavour
c::] prediction

Tracl_( origin
predictions

Vertex
predictions

—

Conditional track
representation

Graph
Network

Node
Network

Track
Initialiser

Edge
Network
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Training

« MC samples: t'f%l+j.et/dileptons, Z'>qq (flat jet py up to
5 TeV, equal bb/cc/light)
— 30M jets (60% Tt + 40% Z’)
* Goal: minimize total l0ss Ly, =Liett AL errextBlirack
— L. categorical cross entropy loss over jet flavors
— L,ertex: PiNAry cross entropy loss averaged over track pairs
— L. Categorical cross entropy loss over track origins
* Optimal choice: a=1.5, f=0.5

— verified that the algorithm works with L., minimization alone
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Performance

ATL-PHYS-PUB-2022-027

P T
08
b-jet tagging efficiency

] S B
0.9 1.0 %.6 0.7

.I....I\\\.:
0.8 0.9 1.0

R T 2] betag score: Dy = log—L2
10k s F tf, 20 < pr <250 GeV BS%WP e DLirljets  —— GN1 lets 1 (1_fC)pl+prC
107 F 1
10 | fraction of c-jets (0.05)
Ty 60A) 704, 85%
10 F HH H =
1 . WP
10 _45 15 25
Dy,
.S 10° :—!IITII.AIS ISir%uléti‘on‘Prlelilmiﬁarlyl S —oour .5 10° ATLAS Slmulallon Prellmmary S — ool 7
kS) F VS =13TeV — Gn 3 f F VS =13 TeV — GN1 ]
2 b tf, 20 <pr <250 GeV — CGNilep | © 10" [ tf, 20 < pr < 250 GeV — GN1Lep ]
o {1 97 ]
B 10°F f 1 8.0
v [ 2 |
oL with leptonid | = 10°F E
significant 0 . ]
improvement in both /V - | 1 ol | | |
light and c-jet rejection = 4 | | ———— = 3 . T
| i B ¥
(x~2 at 70% WP) 3 | = z::?,\\_a—
e 2r 4 8 r
o | ] o 1
T w
o | o

b-jet tagging efficiency


https://cds.cern.ch/record/2811135

Performance (2)

* Improvement in b-tagging efficiency at fixed mistag rate (0.01) is
particularly significant at large jet p;

* \Vertexing performance: inclusive b-vertex reco efficiency ~80%
* Track classification performance: weighted AUC ~0.95
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Flavor tagging summary

* GN1is anovel jet tagger based on graph NN
architecture and trained with auxiliary training targets

— shown to significantly improve flavor tagging performance
compared to the current ATLAS base line tagger (DL1r)

* Flexible, easier to optimize, simpler to maintain

 Demonstrates improved track classification
performance and high b-tagging vertex finding
efficiency
— looking for further improvements due to in-depth tuning

of NN configurations, better modeling (simulation of
interaction of B/D hadrons), improved pileup jet rejection

2/20/23 Alexander Khanov, OSU 25



Use case 2: search for new physics
using anomaly detection

e The idea: look for events with “abnormal”

kinematics

— train the NN on 1% of ‘§ 11811;1 ' lATLASIIIIi:HQTL)]
all data, obtain the loss “ 183 fs=13Tev, 140867 2 e e
function o S N

— For events with 19 e,
abnormally large loss, 10 e
fit the invariant mass o
distributions with a 1E j;j;j_f.'.'.}f-f:'f::'_".'f."..'.‘.';‘?:'.-t.'t':*:.-:-,:',{{:";éif-:;;-...
smooth curve, look for ~ 193F |

1070 S D b

bumps

2/20/23

Alexander Khanov, OSU

Anomaly regions

26



AD: inputs

* Input space: rapidity mass matrix (NIM A 931 (2019) 92)
— Lorentz invariant under boosts along the longitudinal axes
— single and two-particle densities for each particle or jet
— dimensionless, normalized to (0,1)
— fixed size

Missing momentum and transverse masses

( er™  mr() mp(ia)  -..omr(in)  omr(u)  mr(p) ""”'l'(ﬂu\")\ At massas of
he(y)  ex () STz M~ s Ay L e T Ay) pairs m(i,j)E,,

m( o, p1) m(jo. p2) -..m(Jo. )

A

hi(in) R(71.08) c.0er(jN| In) m(gn, pe) coom(gn.pg)

hi(j2) .m(j2. Jn)

2) mpy. piy)

Wz prg) f E,/E_, scaled
transverse energies and
\h (nx) Rlun,di) hlpw. j2) By gn) b, i) h(py, .ﬁ\ Soorgy. ddionces
\
Lorentz factors Rapidity difference: h(i,j) ~cosh (y, -y)

L] LU LD RAIEXdIIUET NIIdIVUY, UoU L/

hp(py) fe(pen,gi) h(pa.ga) - h(
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AD model: AutoEncoder

e 1287 inputs/outputs (RMM values except inv. masses)

* Leaky RELU activation for all layers g* amsew 2 7
— - 10 L_ -
xl : . g > .fl o 20 40 E:I] Bo 100 120 F;I‘:-I;h
n=1287 .
loss = — — &) e
0ss = — ; (x, — %)

0.0000 (.0023% I:HJ':IS:E' IJI:HJ 5 IJJ:I].D'J l:lﬂliﬁ- 'ZI-EII.'EEI Dﬂl 3 'JEIZ'JEI
Train loss
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AD results

 No BSM discovery, quite a few
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AD summary

* The discovery sensitivity shows a large improvement
after the anomaly region selection, which is illustrated
using several benchmark BSM models

* The analysis sets 95% CL upper limits on contributions

from generic Gaussian signals to the studied invariant
mass distributions

 Compared to previous limits without anomaly region
selections, the reported model-independent limits
have a stronger potential to exclude generic heavy
states with complex decay modes



2/20/23 Alexander Khanov, OSU 31



ROC curves

 ROC = Receiver Operation Characteristic

* Developed by electrical engineers during WWII to
characterize radar operation
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S/B separation figures of merit

@ Approximate figure of merit: significance S = 5/1/5
@ A better figure of merit: optimizing the likelihood ratio L(S+B)/L(B)

Scr, = v/ 2((s + b) In(1 + s/b) — s)
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Likelihood

e Likelihood: L=s/(s+b),
s=M(x,), y=1
b=M(x,), y=0

* Doesn’t consider correlations — this can be fixed by
diagonalizing the inputs
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Popular activation functions

Step Linear Sigmoid

tanh Rectified Linear Unit  Leaky RelLU

Alexander Khanov, OSU

35



Loss functions for classification

o Categorical cross-entropy loss (a.k.a. softmax) for N observations,
C > 2 exclusive classes, where y; = {0, 1} is true label, and pj is
predicted probability for observation i =1... N, class j=1...C:

1 N C
L= _NZZW log(pij)

i=1 j=1
e Binary cross-entropy loss for N observations, where y; = {0.1} is true
label, and p; is predicted probability for observation i =1... N:
special case for categorical cross-entropy loss with two exclusive
classes

N
[ — —% ;[y log(p) + (1 — yi) log(1 — py)]
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