Particles

Alexander Khanov

PHYS6260: Experimental Methods is HEP
Oklahoma State University

August 21, 2023
Particles

- High Energy Physics = Particle Physics
- HEP addresses fundamental questions, just to name a few:
 - what is the origin of mass?
 - what is dark matter?
 - why there is an imbalance of matter and antimatter in the Universe?
 - hierarchy problem (why gravity is so weak)?
 - where are magnetic monopoles?
 - is the proton stable?
- The way it tries to solve these problems is by looking at fundamental particles and their interactions
 - “fundamental” = can’t be made by a combination of other particles
Particles and fields

- We can’t look at particles directly – they are “too small”
 - we study properties of particles through their interactions which are carried out by fields

- There is no real boundary between particles and fields:
 - particles are localized in space and fields exist everywhere – but this distinction is moot because of uncertainty principle
 - particles exhibit wave properties, and fields are quantized

- Most of the particles we are interested in are extremely short-lived and quickly convert to other particles
 - these conversions are also carried out by interactions
Standard Model

- A little “periodic table” that includes all known fundamental particles and carriers of all fundamental interactions
 - gravity is not included (and we have no clue about it)

Standard Model of Elementary Particles

- **Leptons**: e, μ, τ, ν are leptons, u, d, c, s, b, t are quarks
- Leptons and quarks are fermions, field carriers are bosons
- ν, Z, γ do not have a charge, e, μ, τ have “integer” charge, and quarks have “fractional” charge
- γ, g, ν (in SM!) don’t have a mass
Composite particles

- Quarks and gluons are not observed as isolated particles due to color confinement
 - what we see are colorless composite particles
- Two main ways to make a colorless object out of colored quarks:
 - mesons: quark-antiquark bound states with symmetric color wavefunction
 \[\chi_s = \frac{1}{\sqrt{3}} (r\bar{r} + g\bar{g} + b\bar{b}) \]
 - baryons: three quark bound states with asymmetric color wavefunction
 \[\chi_c = \frac{1}{\sqrt{6}} (rgb - rbg + gbr - grb + brg - bgr) \]
- They don’t interact by exchanging single gluons (need to stay color neutral), typical interaction is through pions
 - pions are massive (~140 GeV), so strong interaction has a finite range (Yukawa, 1935)
- Baryons and mesons are collectively known as hadrons (Okun, 1962)
SU(2) hadrons

- Consider u and d quarks as a single particle that has isospin $I = 1/2$, so that u has $I_3 = +1/2$ and d has $I_3 = -1/2$
 - by observation, electric charge $Q = B/2 + I_3$, where B is baryon charge (quarks have $B = 1/3$)
- u and d form a doublet under symmetry group SU(2)
 - Special (det $A = 1$) Unitary ($A^\dagger A = I$) Lie group of 2×2 matrices
 - $A = \left(\begin{array}{cc} a & -\bar{b} \\ b & \bar{a} \end{array} \right)$, $|a|^2 + |b|^2 = 1$
- On top of isospin, quarks also have regular (angular) spin $1/2$
 - considering lowest orbital angular momentum $L = 0$, mesons can have $J = 0$ or 1, and baryons can have $J = 1/2$ or $3/2$
- Examples:
 - $J = 0$ (pseudoscalar) mesons: $\pi^+ = u\bar{d}$, $\pi^- = d\bar{u}$, $\pi^0 = \frac{1}{\sqrt{2}}(d\bar{d} - u\bar{u})$
 - $J = 1$ (vector) mesons: $\rho^+ = u\bar{d}$, $\rho^- = d\bar{u}$, $\rho^0 = \frac{1}{\sqrt{2}}(d\bar{d} - u\bar{u})$
 - $J = 1/2$ baryons: proton p (uud) and neutron n (ddu)
 - $J = 3/2$ baryons: Δ-resonances
SU(3) mesons

- After strange particles were discovered, particle physics started to look like a zoo (Oppenheimer, 1956)
- SU(2) → SU(3) (broken due to massive s-quark)
 - clean SU(3) states are
 \[\eta_8 = \frac{1}{\sqrt{6}} (u\bar{u} + d\bar{d} - 2s\bar{s}) \] and
 \[\eta_1 = \frac{1}{\sqrt{3}} (u\bar{u} + d\bar{d} + s\bar{s}) \]
 - observed state \((\eta, \eta')\) are mixed

Visualization: ”the eightfold way” (Gell-Mann, 1961)
SU(3) baryons

- For baryons, have an octet \((J = 1/2)\) and a decuplet \((J = 3/2)\)
Charm and beauty

- Discovery of strange particles was followed by discovery of charm and beauty, and things became complicated.
- Luckily (?), that has completed the picture – all baryons and mesons we know are made of u, d, s, c, and b quarks.
 - the last, top quark does not form bound states.

Plot taken from the CDF report on discovery of Σ_b (2006)
Most common particles

- To explain most of matter around us, we just need electrons, protons, and neutrons
Stable and unstable particles

- There are very few particles which have infinite (or at least very large) lifetime
 - photon – the one we can detect by naked eye
 - protons and electrons (is the proton really stable?)
 - neutrinos (but they oscillate)
 - gluons / light quarks – but they can’t be observed directly
- neutron is not stable but its lifetime is macroscopic (15 minutes)
 - it’s for a “free” neutron, those inside the nucleus keep turning into protons and vice versa
- muons: 2.2 µs, charged pions: 26 ns (π^0 is only 8.4×10^{-17} s)
 - doesn’t look much but think of the path it may travel: $c = 3 \times 10^8$ m/s, 1 ns means 30 cm
- most particles (including W/Z and Higgs) decay so fast there is no way to “catch” them
How unstable is unstable?

- To address this question, need to compare particle’s lifetime to its mass
 - mass is energy: \(E = mc^2 \)
 - energy is time: \(\Delta E \Delta t \geq \hbar/2 \)
 - 1 GeV corresponds to \(3 \times 10^{-25} \) s

- measurement of lifetime is intrinsically uncertain
 - having done it many times, we will get a bell-shaped distribution (strictly speaking, a Breit-Wigner one: \(\sim \Gamma/((E - E_0)^2 + (\Gamma/2)^2) \))

- At some point, the “particle” is no longer a particle!
Other particles

- So far we are not aware of any other particles which might be there
- But there are many reasons to believe that more particles exist
 - Supersymmetric particles
 - More SM generations
 - More Higgs particles
 - Monopoles, gravitons, axions, KK excitations
 - ?