Particles

Alexander Khanov

PHYS6260: Experimental Methods is HEP Oklahoma State University

August 21, 2023

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

Particles

- High Energy Physics = Particle Physics
- HEP addresses fundamental questions, just to name a few:
 - what is the origin of mass?
 - what is dark matter?
 - why there is an imbalance of matter and antimatter in the Universe?
 - hierarchy problem (why gravity is so weak)?
 - where are magnetic monopoles?
 - is the proton stable?
- The way it tries to solve these problems is by looking at fundamental particles and their interactions
 - "fundamental" = can't be made by a combination of other particles

Particles and fields

- We can't look at particles directly they are "too small"
 - we study properties of particles through their interactions which are carried out by fields
- There is no real boundary between particles and fields:
 - particles are localized in space and fields exist everywhere but this distinction is moot because of uncertainty principle
 - particles exhibit wave properties, and fields are quantized
- Most of the particles we are interested in are extremely short-lived and quickly convert to other particles
 - these conversions are also carried out by interactions

Standard Model

- A little "periodic table" that includes all known fundamental particles and carriers of all fundamental interactions
 - gravity is not included (and we have no clue about it)

Standard Model of Elementary Particles

- e,μ,τ,ν are leptons, u, d, c, s, b, t are quarks
- leptons and quarks are fermions, field carriers are bosons
- ν , Z, γ do not have a charge, e,μ,τ have "integer" charge, and quarks have "fractional" charge
- γ , g, and ν (in SM!) don't have a mass

< ∃ > <

Particle physics timeline

A. Khanov (PHYS6260, OSU)

 ■
 ■
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •

Composite particles

- Quarks and gluons are not observed as isolated particles due to color confinment
 - what we see are colorless composite particles
- Two main ways to make a colorless object out of colored quarks:
 - ► mesons: quark-antiquark bound states with symmetric color wavefunction $\chi_s = \frac{1}{\sqrt{3}} (r\bar{r} + g\bar{g} + b\bar{b})$
 - ▶ baryons: three quark bound states with asymmetric color wavefunction $\chi_c = \frac{1}{\sqrt{6}} (rgb rbg + gbr grb + brg bgr)$
- They don't interact by exchanging single gluons (need to stay color neutral), typical interaction is through pions
 - pions are massive (~140 GeV), so strong interaction has a finite range (Yukawa, 1935)
- Baryons and mesons are collectively known as hadrons (Okun, 1962)

イロト 不得下 イヨト イヨト 二日

SU(2) hadrons

- Consider u and d quarks as a single particle that has isospin I = 1/2, so that u has $I_3 = +1/2$ and d has $I_3 = -1/2$
 - ▶ by observation, electric charge $Q = B/2 + I_3$, where B is baryon charge (quarks have B = 1/3)
- u and d form a doublet under symmetry group SU(2)

► Special (det
$$A = 1$$
) Unitary ($A^{\dagger}A = I$) Lie group of 2 × 2 matrices
► $A = \begin{pmatrix} a & -\bar{b} \\ b & \bar{a} \end{pmatrix}$, $|a|^2 + |b|^2 = 1$

• On top of isospin, quarks also have regular (angular) spin 1/2

- ► considering lowest orbital angular momentum L = 0, mesons can have J = 0 or 1, and baryons can have J = 1/2 or 3/2
- Examples:
 - J = 0 (pseudoscalar) mesons: $\pi^+ = u\bar{d}, \ \pi^- = d\bar{u}, \ \pi^0 = \frac{1}{\sqrt{2}}(d\bar{d} u\bar{u})$
 - J = 1 (vector) mesons: $\rho^+ = u\bar{d}$, $\rho^- = d\bar{u}$, $\rho^0 = \frac{1}{\sqrt{2}}(d\bar{d} u\bar{u})$
 - J = 1/2 baryons: proton p(uud) and neutron n(du)
 - J = 3/2 baryons: Δ -resonances

SU(3) mesons

- After strange particles were discovered, particle physics started to look like a zoo (Oppenheimer, 1956)
- $SU(2) \rightarrow SU(3)$ (broken due to massive *s*-quark)
 - clean SU(3) states are $\eta_8 = \frac{1}{\sqrt{6}} (u\bar{u} + d\bar{d} - 2s\bar{s}) \text{ and }$ $\eta_1 = \frac{1}{\sqrt{3}} (u\bar{u} + d\bar{d} + s\bar{s})$
 - observed state (η, η') are mixed
- Visualization: "the eightfold way" (Gell-Mann, 1961)

SU(3) baryons

• For baryons, have an octet (J = 1/2) and a decuplet (J = 3/2)

A D A D A D A

Charm and beauty

- Discovery of strange particles was followed by discovery of charm and beauty, and things became complicated
- Luckily (?), that has completed the picture – all baryons and mesons we know are made of u, d, s, c, and b quarks
 - the last, top quark does not form bound states

Plot taken from the CDF report on discovery of Σ_b (2006)

8/21/23 10 / 14

Most common particles

• To explain most of matter around us, we just need electrons, protons, and neutrons

A B > A B >

Stable and unstable particles

- There are very few particles which have infinite (or at least very large) lifetime
 - photon the one we can detect by naked eye
 - protons and electrons (is the proton really stable?)
 - neutrinos (but they oscillate)
 - gluons / light quarks but they can't be observed directly

• neutron is not stable but its lifetime is macroscopic (15 minutes)

- it's for a "free" neutron, those inside the nucleus keep turning into protons and vice versa
- muons: 2.2 μ s, charged pions: 26 ns (π^0 is only 8.4 \times 10⁻¹⁷ s)
 - doesn't look much but think of the path it may travel:
 - $c=3 imes 10^8$ m/s, 1 ns means 30 cm
- most particles (including W/Z and Higgs) decay so fast there is no way to "catch" them

(本部)と 本語 と 本語を

How unstable is unstable?

- To address this question, need to compare particle's lifetime to its mass
 - mass is energy: $E = mc^2$
 - energy is time: $\Delta E \Delta t \geq \hbar/2$
 - 1 GeV corresponds to 3×10^{-25} s
- measurement of lifetime is intrinsically uncertain
 - ► having done it many times, we will get a bell-shaped distribution (strictly speaking, a Breit-Wigner one: $\sim \Gamma/((E E_0)^2 + (\Gamma/2)^2))$
- At some point, the "particle" is no longer a particle!

Other particles

- So far we are not aware of any other particles which might be there
- But there are many reasons to believe that more particles exist
 - Supersymmetric particles
 - More SM generations
 - More Higgs particles
 - Monopoles, gravitons, axions, KK excitations
 - ▶ ?